Rabinovich–Fabrikant equations

The Rabinovich–Fabrikant equations are a set of three coupled ordinary differential equations exhibiting chaotic behaviour for certain values of the parameters. They are named after Mikhail Rabinovich and Anatoly Fabrikant, who described them in 1979.

System description

The equations are:[1]

where α, γ are constants that control the evolution of the system. For some values of α and γ, the system is chaotic, but for others it tends to a stable periodic orbit.

Danca and Chen[2] note that the Rabinovich–Fabrikant system is difficult to analyse (due to the presence of quadratic and cubic terms) and that different attractors can be obtained for the same parameters by using different step sizes in the integration. Also, recently, a hidden attractor was discovered in the Rabinovich–Fabrikant system [3].

Equilibrium points

Graph of the regions for which equilibrium points exist.

The Rabinovich–Fabrikant system has five hyperbolic equilibrium points, one at the origin and four dependent on the system parameters α and γ:[2]

where

These equilibrium points only exist for certain values of α and γ > 0.

γ = 0.87, α = 1.1

An example of chaotic behaviour is obtained for γ = 0.87 and α = 1.1 with initial conditions of (−1, 0, 0.5).[4] The correlation dimension was found to be 2.19 ± 0.01.[5] The Lyapunov exponents, λ are approximately 0.1981, 0, −0.6581 and the Kaplan–Yorke dimension, DKY ≈ 2.3010[4]

γ = 0.1

Danca and Romera[6] showed that for γ = 0.1, the system is chaotic for α = 0.98, but progresses on a stable limit cycle for α = 0.14.

3D parametric plot of the solution of the Rabinovich-Fabrikant equations for α=0.14 and γ=0.1 (limit cycle is shown by the red curve)
gollark: You could use AVIFs/APNGs/whatever, and make it run off images like piet, except it's image sequences interpreted as 3D instead.
gollark: Oh, well, in that case, new esolang opportunity?
gollark: I figure you could either project it from a 2D grid, or feed it multiple layers of text file/image.
gollark: ÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆ
gollark: So we have 2D ones, but are there ones operating in 3D space for code/data somehow?

See also

References

  1. Rabinovich, Mikhail I.; Fabrikant, A. L. (1979). "Stochastic Self-Modulation of Waves in Nonequilibrium Media". Sov. Phys. JETP. 50: 311. Bibcode:1979JETP...50..311R.
  2. Danca, Marius-F.; Chen, Guanrong (2004). "Birfurcation and Chaos in a Complex Model of Dissipative Medium". International Journal of Bifurcation and Chaos. World Scientific Publishing Company. 14 (10): 3409–3447. Bibcode:2004IJBC...14.3409D. doi:10.1142/S0218127404011430.
  3. Danca M.-F.; Kuznetsov N.; Chen G. (2017). "Unusual dynamics and hidden attractors of the Rabinovich-Fabrikant system". Nonlinear Dynamics. 88 (1): 791–805. arXiv:1511.07765. doi:10.1007/s11071-016-3276-1.
  4. Sprott, Julien C. (2003). Chaos and Time-series Analysis. Oxford University Press. p. 433. ISBN 0-19-850840-9.
  5. Grassberger, P.; Procaccia, I. (1983). "Measuring the strangeness of strange attractors". Physica D. 9 (1–2): 189–208. Bibcode:1983PhyD....9..189G. doi:10.1016/0167-2789(83)90298-1.
  6. Danca, Marius-F.; Romera, Miguel (2008). "Algorithm for Control and Anticontrol of Chaos in Continuous-Time Dynamical Systems". Dynamics of Continuous, Discrete and Impulsive Systems. Series B: Applications & Algorithms. Watam Press. 15: 155–164. hdl:10261/8868. ISSN 1492-8760.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.