Phytanic acid

Phytanic acid (or 3,7,11,15-tetramethyl hexadecanoic acid) is a branched chain fatty acid that humans can obtain through the consumption of dairy products, ruminant animal fats, and certain fish.[1] Western diets are estimated to provide 50–100 mg of phytanic acid per day.[2] In a study conducted in Oxford, individuals who consumed meat had, on average, a 6.7-fold higher geometric mean plasma phytanic acid concentration than did vegans.[3]

Phytanic acid
Names
IUPAC name
(7R,11R)-3,7,11,15-Tetramethylhexadecanoic acid
Other names
phytanoic acid
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.159.135
MeSH Phytanic+acid
UNII
Properties
C20H40O2
Molar mass 312.538 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Y verify (what is YN ?)
Infobox references

Human pathology

Unlike most fatty acids, phytanic acid cannot be metabolized by β-oxidation. Instead, it undergoes α-oxidation in the peroxisome, where it is converted into pristanic acid by the removal of one carbon.[4] Pristanic acid can undergo several rounds of β-oxidation in the peroxisome to form medium chain fatty acids that can be converted to carbon dioxide and water in mitochondria.

Individuals with adult Refsum disease, an autosomal recessive neurological disorder caused by mutations in the PHYH gene, have impaired α-oxidation activity and accumulate large stores of phytanic acid in their blood and tissues.[5] This frequently leads to peripheral polyneuropathy, cerebellar ataxia, retinitis pigmentosa, anosmia, and hearing loss.[6]

Presence in other organisms

In ruminant animals, the gut fermentation of ingested plant materials liberates phytol, a constituent of chlorophyll, which is then converted to phytanic acid and stored in fats.[7] In contrast to observations made in humans, there is indirect evidence that diverse non human primates, including the great apes other than humans (bonobos, chimpanzees, gorillas and orangutans), can derive significant amounts of phytanic acid from the hindgut fermentation of plant materials.[8][9]

Freshwater sponges contain terpenoid acids such as 4,8,12-trimethyltridecanoic, phytanic and pristanic acids, which indicates that these acids may have chemotaxonomical significance for both marine and freshwater sponges.[10]

Insects, such as the sumac flea beetle, are reported to use phytol and its metabolites (e.g. phytanic acid) as chemical deterrents against predation.[11] These compounds originate from host plants.

Modulator of transcription

Phytanic acid and its metabolites have been reported to bind to and/or activate the transcription factors PPAR-alpha[12] and retinoid X receptor (RXR).[13]

gollark: Generating logic.
gollark: No, `gen_add` magically exists already.
gollark: Macron provides magical magic magics in the scope for doing that.
gollark: ?
gollark: *Why* is it

References

  1. Brown, P. J.; et al. (1993). "The determination of phytanic acid and phytol in certain foods and the application of this knowledge to the choice of suitable convenience foods for patients with Refsum's disease". Journal of Human Nutrition and Dietetics. 6: 295–305. doi:10.1111/j.1365-277x.1993.tb00375.x.
  2. Steinberg, D. Phytanic acid storage disease (Refsum's disease). In: Metabolic Basis of Inherited Disease. Edited by Stanbury JB, Wyngarden JB, Fredericksen DS, Goldstein JL, Brown MS, 5th edn. New York: McGraw Hill; 1983: 731-747.
  3. Allen, N. E.; Grace, P. B.; Ginn, A.; Travis, R. C.; Roddam, A. W.; Appleby, P. N.; Key, T. (2007). "Phytanic acid: Measurement of plasma concentrations by gas–liquid chromatography–mass spectrometry analysis and associations with diet and other plasma fatty acids". British Journal of Nutrition. 99 (3): 653–659. doi:10.1017/S000711450782407X. PMID 17868488.
  4. Brink, D. M.; Wanders, R. J. A. (2006). "Phytanic acid: Production from phytol, its breakdown and role in human disease". Cellular and Molecular Life Sciences. 63 (15): 1752–1765. doi:10.1007/s00018-005-5463-y. PMID 16799769.
  5. Quintaliani, G.; Buoncristiani, U.; Orecchini, A.; Pierini, P.; Ricci, R.; Reboldi, G. P. (1994). "The Umbria Regional Registry for hemodialyzed and transplanted patients. Preliminary experience with an informatic procedure". Contributions to nephrology. 109: 96–99. PMID 7956237.
  6. Komen, J. C.; Komen, R. J. A. (2007). "Peroxisomes, Refsum's disease and the α- and ω-oxidation of phytanic acid". Biochemical Society Transactions. 35 (Pt 5): 865–869. doi:10.1042/BST0350865. PMID 17956234.
  7. Verhoeven, N. M.; Wanders, R. J.; Poll-The, B. T.; Saudubray, J. M.; Jakobs, C. (1998). "The metabolism of phytanic acid and pristanic acid in man: a review". Journal of Inherited Metabolic Disease. 21 (7): 697–728. doi:10.1023/A:1005476631419. PMID 9819701.
  8. Watkins, P. A.; Moser, A. B.; Toomer, C. B.; Steinberg, S. J.; Moser, H. W.; Karaman, M. W.; Ramaswamy, K.; Siegmund, K. D.; Lee, D. R.; Ely, J. J.; Ryder, O. A.; Hacia, J. G. (2010). "Identification of differences in human and great ape phytanic acid metabolism that could influence gene expression profiles and physiological functions". BMC Physiology. 10: 19. doi:10.1186/1472-6793-10-19. PMC 2964658. PMID 20932325.
  9. Moser, A. B.; Hey, J.; Dranchak, P. K.; Karaman, M. W.; Zhao, J.; Cox, L. A.; Ryder, O. A.; Hacia, J. G. (2013). "Diverse captive non-human primates with phytanic acid-deficient diets rich in plant products have substantial phytanic acid levels in their red blood cells". Lipids in Health and Disease. 12 (1): 10. doi:10.1186/1476-511X-12-10. PMC 3571895. PMID 23379307.
  10. Rezanka, T.; Dembitsky, V. M. (1993). "Isoprenoid polyunsaturated fatty acids from freshwater sponges". Journal of Natural Products. 56: 1898–1904. doi:10.1021/np50101a005.
  11. Venci, F.V.; Morton, T.C. (1998). "The shield defense of the sumac flea beetle, Blepharida rhois (Chrysomelidae: Alticinae)". Chemoecology. 8: 25–32.
  12. Gloerich, J.; Van Vlies, N.; Jansen, G. A.; Denis, S.; Ruiter, J. P. N.; Van Werkhoven, M. A.; Duran, M.; Vaz, F. M.; Wanders, R. J. A. (2005). "A phytol-enriched diet induces changes in fatty acid metabolism in mice both via PPAR -dependent and -independent pathways". The Journal of Lipid Research. 46 (4): 716–26. doi:10.1194/jlr.M400337-JLR200. PMID 15654129.
  13. Kitareewan, S.; Burka, L. T.; Tomer, K. B.; Parker, C. E.; Deterding, L. J.; Stevens, R. D.; Forman, B. M.; Mais, D. E.; Heyman, R. A.; McMorris, T.; Weinberger, C. (1996). "Phytol metabolites are circulating dietary factors that activate the nuclear receptor RXR". Molecular Biology of the Cell. 7 (8): 1153–1166. doi:10.1091/mbc.7.8.1153. PMC 275969. PMID 8856661.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.