Phosphatidylinositol

Phosphatidylinositol consists of a family of lipids as illustrated on the right, where red is x, blue is y, and black is z, in the context of independent variation, a class of the phosphatidylglycerides. In such molecules the isomer of the inositol group is assumed to be the myo- conformer unless otherwise stated. Typically phosphatidylinositols form a minor component on the cytosolic side of eukaryotic cell membranes. The phosphate group gives the molecules a negative charge at physiological pH.

Phosphatidylinositol
Names
Other names
PI, PtdIns
Identifiers
ChEBI
DrugBank
Properties
C47H83O13P
Molar mass 886.56 g/mol, neutral with fatty acid composition - 18:0, 20:4
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Y verify (what is YN ?)
Infobox references

The form of phosphatidylinositol comprising the isomer muco-inositol acts as a sensory receptor in the taste function of the sensory system. In this context it is often referred to as PtdIns, but that does not imply any molecular difference from phosphatidylinositols comprising the myo- conformers of inositol.

The phosphatidylinositol can be phosphorylated to form phosphatidylinositol phosphate (PI-4-P, referred to as PIP in close context or informally), phosphatidylinositol bisphosphate (PIP2) and phosphatidylinositol trisphosphate (PIP3). All lipids based on phosphatidylinositol are known as inositides, or sometimes phosphoinositides.

Biosynthesis


Biosynthesis of phosphatidylinositol catalyzed by phosphatidylinositol synthase. Figure adapted from Christopher, K.; van Holde, K.E.; Ahern, Kevin G. Biochemistry Third Edition. Pearson Education, Inc: Singapore, 2005; p 678.[1]

The synthesis of phosphatidylinositol in the laboratory is catalyzed by phosphatidylinositol synthase and involves CDP-diacylglycerol and L-myo-inositol.[1]

Chemistry

PI has a polar and non-polar region, making the lipid an amphiphile. Phosphatidylinositol is classified as a glycerophospholipid that contains a glycerol backbone, two non-polar fatty acid tails, a phosphate group substituted with an inositol polar head group.

The most common fatty acids of phosphoinositides are stearic acid in the SN1 position and arachidonic acid, in the SN2 position. Hydrolysis of phosphoinositides yield one mole of glycerol, two moles of fatty acids, one mole of inositol and one, two, or three moles of phosphoric acids, depending on the number of phosphates on the inositol rings. Phosphoinositides are regarded as the most acidic phospholipids.

The specific fatty acids of PtdIns, and their conformation, employed in the sensory neurons has not been elucidated.

Phosphoinositides

Phosphorylated forms of phosphatidylinositol (PI) are called phosphoinositides and play important roles in lipid signaling, cell signaling and membrane trafficking. The inositol ring can be phosphorylated by a variety of kinases on the three, four and five hydroxyl groups in seven different combinations. However, the two and six hydroxyl groups are typically not phosphorylated due to steric hindrance.

All seven variations of the following phosphoinositides have been found in animals:

Phosphatidylinositol monophosphates:

Phosphatidylinositol bisphosphates:

Phosphatidylinositol trisphosphate:

  • Phosphatidylinositol 3,4,5-trisphosphate, also known as PtdIns(3,4,5)P3 or PI(3,4,5)P3

These phosphoinositides are also found in plant cells, with the exception of PIP3.[2]

gollark: This is EXTREMELY ANNOYING. I have a bunch of websocket-based things which work fine in Chromium and wscat and whatever else, and appear to work if I run them locally too, but if I both have them behind my reverse proxy (caddy) and use them in Firefox it fails and just says `Firefox can’t establish a connection to the server at wss://[the things]`.
gollark: It depends on some patents or something. There's licensing weirdness.
gollark: Maybe it doesn't like HEVC. Who knows.
gollark: Some videos do. I don't know Discord's rules for it. They are probably insane.
gollark: As an upper bound for how good it is, maybe.

See also

References

  1. Mathews, Chrisotphe K.; van Holde, K.E.; Ahern, Kevin G. (2005). Biochemistry Third Edition.
  2. Muller-Roeber B, Pical C (2002). Inositol Phospholipid Metabolism in Arabidopsis. Characterized and Putative Isoforms of Inositol Phospholipid Kinase and Phosphoinositide-Specific Phospholipase C.

Additional images

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.