Cymbopogon martinii

Cymbopogon martinii is a species of grass in the genus Cymbopogon (lemongrasses) native to India and Indochina, but widely cultivated in many places for its aromatic oil.[3][4] It is best known by the common name palmarosa (palm rose) as it smells sweet and rose-like. Other common names include Indian geranium, gingergrass, rosha, and rosha grass.

Cymbopogon martinii
Scientific classification
Kingdom: Plantae
Clade: Tracheophytes
Clade: Angiosperms
Clade: Monocots
Clade: Commelinids
Order: Poales
Family: Poaceae
Subfamily: Panicoideae
Genus: Cymbopogon
Species:
C. martinii
Binomial name
Cymbopogon martinii
(Roxb.) Wats.
Synonyms[1]
  • Cymbopogon martini (Roxb.) Wats., spelling preferred under ICN[1][2]
  • Andropogon martini Roxb.
  • Cymbopogon martinianus Schult.
  • Gymnanthelia martini (Roxb.) Andersson
  • Andropogon schoenanthus var. martini (Roxb.) Hook.f.
  • Andropogon pachnodes Trin.
  • Andropogon calamus-aromaticus Royle
  • Cymbopogon pachnodes (Trin.) W.Watson
  • Cymbopogon martini var. sofia B.K.Gupta
  • Cymbopogon motia B.K.Gupta
Cymbopogon martinii Image

Palmarosa oil

The essential oil of this plant, which contains the chemical compound geraniol, is valued for its scent and for a number of traditional medicinal and household uses. Palmarosa oil has been shown to be an effective insect repellent when applied to stored grain and beans,[5] an antihelmintic against nematodes,[6] and an antifungal and mosquito repellent.[7]

Palmarosa oil, which has a scent similar to roses, is added to soaps and cosmetics.[7]

Cultivation

This grass grows fairly tall, ranging from 1.3 to 3 m (4 ft 3 in to 9 ft 10 in) in height with a pale green color and a strong thin stem. This crop grows slowly, taking three months to flower; once it has flowered, it can be harvested. It received the name palmarosa from the sweet-smelling floral rose aroma it gives off.[8] It is widely used for rose-smelling perfumes and cosmetics around the world.[9] It is also known to help repel mosquitoes and flavor tobacco products. It has been used in medicinal solutions and for aromatherapy.[4]

Where/how the product is grown, raised, processed

Palmarosa is wildly grown in wetlands in provinces of India, including Nepal.[10] The Palmarosa oil is extracted from the stem of the grass by distillation of dried leaves.[11] Once the stems and leaves have been distilled for two to three hours, to separate the oil from the palmarose, then the leftover distilled grass is turned into organic matter and becomes manure or is composted.[12]

Growing conditions

The most efficient way to grow palmarosa is in a nursery with lots of irrigation and soil pH of 7-8.[13] Two or three days before planting, it is best to overwhelm the soil with water to increase soil moisture above 60% when planting the seeds. This moisture increases the germination of the seed and increases weed control in the nursery beds as well. It is also recommended to flood the soil once a month to maintain a high moisture level in the soil. Irrigation in a nursery is most important for the first 40 days. Palmarosa grass grows well in sandy texture soil with low nitrogen, sufficient phosphorus and potassium. Weeds are a problem and keeping them out of the nursery beds will increase the yield. Manual weeding must be done often and involves a well-trained eye to uncover the weeds.[14] Also, palmarosa is often intercropped to help suppress the weeds, thus increasing yields and the land efficiency. Mostly farmers intercrop with pigeon pea, also millet and sorghum work well with row or strip intercropping because palmarosa can be harvested three to four times a year.[15][12]

Labour cost and issues

It is mainly used in the perfumery industry not just for the pleasant smell but also as a source of high-grade geraniol.[3] The geraniol level received from the palmarosa oil is not always the same—it depends on three factors: first being how the diphosphate is removed from the geranyl diphosphate (GPP); second the process of converting geraniol into the form of geranyl acetate; and lastly the process of converting geranyl acetate into the geranial. If these steps are done incorrectly the level of geranial will be low along with the profits.[16]

Inputs required

A nursery is needed or there will be poor growth yields, that may not bring any profit to the farmer and potentially the farmer could have an economical loss. This requirement increases the startup cost for farmers which some farmers are unable to pay.[15] If not grown in a nursery this will increase the weeding labour inputs by over 70% and decrease the yield. Farmers will be spending more time weeding the plots and will receive a smaller return then if they had a nursery.[17]

Antifungal activity

Palmarosa oil is an antifungal that fights against Aspergillus niger (commonly known as black mold), Chaetomium globosum (also known as moldy soil), and Penicillium funiculosum, which is a plant pathogen.[3]

gollark: See, if we gather a big enough sample of them now, then if suddenly they start being delayed by exactly a second we can just adjust™ them with magic.
gollark: We should begin measuring the exact length of all palaiologistic typing events *now* in order to statisticize in case of palaiologistics (e.g. delay) happening to them later.
gollark: This is correct. Websockets require annoying XORing and such.
gollark: Apiobee™™.
gollark: So it turns out that heavpoot was right and the interbridge bridge code is awful and full of apiaries and now I don't know how virtual channels should work.

References

  1. Kew World Checklist of Selected Plant Families
  2. The International Plant Names Index
  3. Prashar, A.; Hili, P.; Veness, R.; Evans, C. (2003). "Antimicrobial action of palmarosa oil (Cymbopogon martinii) on Saccharomyces cerevisiae". Phytochemistry. 63 (5): 569–575. doi:10.1016/S0031-9422(03)00226-7.
  4. Rajeswara Rao, B.; Kaul, P.; Syamasundar, K.; Ramesh, S. (2005). "Chemical profiles of primary and secondary essential oils of palmarosa (Cymbopogon martinii (Roxb.) Wats var. motia Burk.)". IIndustrial Crops and Products. 21 (1): 121–127. doi:10.1016/j.indcrop.2004.02.002.
  5. Kumar, R.; Srivastava, M.; Dubey, N. K. (2007). "Evaluation of Cymbopogon martinii oil extract for control of postharvest insect deterioration in cereals and legumes". Journal of Food Protection. 70 (1): 172–78. doi:10.4315/0362-028X-70.1.172.
  6. Kumaran, A. M.; D'souza, P; Agarwal, A; Bokkolla, RM; Balasubramaniam, M; et al. (2003). "Geraniol, the putative anthelmintic principle of Cymbopogon martinii". Phytotherapy Research. 17 (8): 957. doi:10.1002/ptr.1267. PMID 13680833.
  7. Duke, J. A. and J. duCellier. (1993). CRC Handbook of Alternative Cash Crops. Boca Raton: CRC Press. 214.
  8. Rajeswara Rao, B.; Rajput, D.; Patel, R. (2014). "Improving Yield and Quality of Palmarosa [Cymbopogon martinii (Roxb.) Wats. Var. Motia Burk.] with Sulfur Fertilization". Journal of Plant Nutrition. 38 (3): 384–396. doi:10.1080/01904167.2014.957395.
  9. Mallavarapu, G.; Rajeswara Rao, B.; Kaul, P.; Ramesh, S.; Bhattacharya, A. (1998). "Volatile constituents of the essential oils of the seeds and the herb of palmarosa (Cymbopogon martinii (Roxb.) Wats. var. motia Burk.)". Journal of Plant Nutrition. 13 (3): 167–169. doi:10.1002/(sici)1099-1026(199805/06)13:3<167::aid-ffj719>3.0.co;2-b.
  10. Guenther, E (1952). "Recent developments in essential oil production". Economic Botany. 6 (4): 355–378. doi:10.1007/bf02984884.
  11. Kumaran, A.; D'Souza, P.; Agarwal, A.; Bokkolla, R.; Balasubramaniam, M. (2003). "Geraniol, the putative anthelmintic principle of Cymbopogon martinii". Phytotherapy Research. 17 (8): 957. doi:10.1002/ptr.1267. PMID 13680833.
  12. Rajeswara Rao, B.; Kaul, P.; Syamasundar, K.; Ramesh, S. (2005). "Chemical profiles of primary and secondary essential oils of palmarosa (Cymbopogon martinii (Roxb.) Wats var. motia Burk.)". Industrial Crops and Products. 21 (1): 121–127. doi:10.1016/j.indcrop.2004.02.002.
  13. Maheshwari, P.; Tandon, S. (1959). "Agriculture and economic development in India". Economic Botany. 13 (3): 205–242. doi:10.1007/bf02860584.
  14. Singh, A.; Singh, M.; Singh, D. (1997). "Pre-plant weed control for a palmarosa (Cymbopogon martinii ) nursery". International Journal of Pest Management. 43 (1): 45–48. doi:10.1080/096708797228979.
  15. Maheshwari, P.; Tandon, S. (1959). "Agriculture and economic development in India". Economic Botany. 13 (3): 205–242. doi:10.1007/bf02860584.
  16. Dubey, V.; Bhalla, R.; Luthra, R. (2003). "An esterase is involved in geraniol production during palmarosa inflorescence development". Phytochemistry. 63 (3): 257–264. doi:10.1016/S0031-9422(03)00114-6.
  17. Singh, A.; Singh, M.; Singh, D. (1997). "Pre-plant weed control for a palmarosa (Cymbopogon martinii) nursery". International Journal of Pest Management. 43 (1): 45–48. doi:10.1080/096708797228979.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.