Neutrophil cytosolic factor 4

Neutrophil cytosol factor 4 is a protein that in humans is encoded by the NCF4 gene.[5][6]

NCF4
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesNCF4, NCF, P40PHOX, SH3PXD4, Neutrophil cytosolic factor 4, CGD3
External IDsOMIM: 601488 MGI: 109186 HomoloGene: 525 GeneCards: NCF4
Gene location (Human)
Chr.Chromosome 22 (human)[1]
Band22q12.3Start36,860,988 bp[1]
End36,878,017 bp[1]
RNA expression pattern


More reference expression data
Orthologs
SpeciesHumanMouse
Entrez

4689

17972

Ensembl

ENSG00000275990
ENSG00000100365

ENSMUSG00000071715

UniProt

Q15080

P97369

RefSeq (mRNA)

NM_000631
NM_013416

NM_008677

RefSeq (protein)

NP_000622
NP_038202

NP_032703

Location (UCSC)Chr 22: 36.86 – 36.88 MbChr 15: 78.24 – 78.26 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Function

The protein encoded by this gene is a cytosolic regulatory component of the superoxide-producing phagocyte NADPH-oxidase, a multicomponent enzyme system important for host defense. This protein is preferentially expressed in cells of myeloid lineage. It interacts primarily with neutrophil cytosolic factor 2 (NCF2/p67-phox) to form a complex with neutrophil cytosolic factor 1 (NCF1/p47-phox), which further interacts with the small G protein RAC1 and translocates to the membrane upon cell stimulation. This complex then activates flavocytochrome b, the membrane-integrated catalytic core of the enzyme system. The PX domain of this protein can bind phospholipid products of the PI(3) kinase, which suggests its role in PI(3) kinase-mediated signaling events. The phosphorylation of this protein was found to negatively regulate the enzyme activity. Alternatively spliced transcript variants encoding distinct isoforms have been observed.

Clinical significance

GWAS studies showed that Crohn's disease patient with certain SNPs in NCF4 are more susceptible to get Crohn's disease.[7] Crohn's patient with rs4821544 variants showed a decreased reactive oxygen species after stimulation with GM-CSF which is a proinflammtory cytokine.[8]

Interactions

Neutrophil cytosolic factor 4 has been shown to interact with Ku70,[9] Neutrophil cytosolic factor 1[10][11][12] and Moesin.[13]

gollark: Like many PotatOS features it actually dumps its data on a random free online JSON storage service.
gollark: Store it using PotatOS Cloud Sync for maximum security.
gollark: The way I would do it is encrypting each krist's wallet's password with its own key.
gollark: One wallet per krist, that's what I always say.
gollark: THE FUTURE.

References

  1. ENSG00000100365 GRCh38: Ensembl release 89: ENSG00000275990, ENSG00000100365 - Ensembl, May 2017
  2. GRCm38: Ensembl release 89: ENSMUSG00000071715 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Zhan S, Vazquez N, Zhan S, Wientjes FB, Budarf ML, Schrock E, Ried T, Green ED, Chanock SJ (Nov 1996). "Genomic structure, chromosomal localization, start of transcription, and tissue expression of the human p40-phox, a new component of the nicotinamide adenine dinucleotide phosphate-oxidase complex". Blood. 88 (7): 2714–21. PMID 8839867.
  6. "Entrez Gene: NCF4 neutrophil cytosolic factor 4, 40kDa".
  7. Muise AM, Xu W, Guo CH, Walters TD, Wolters VM, Fattouh R, Lam GY, Hu P, Murchie R, Sherlock M, Gana JC, Russell RK, Glogauer M, Duerr RH, Cho JH, Lees CW, Satsangi J, Wilson DC, Paterson AD, Griffiths AM, Silverberg MS, Brumell JH (2012). "NADPH oxidase complex and IBD candidate gene studies: identification of a rare variant in NCF2 that results in reduced binding to RAC2". Gut. 61 (7): 1028–35. doi:10.1136/gutjnl-2011-300078. PMC 3806486. PMID 21900546.
  8. Somasundaram R, Deuring JJ, van der Woude CJ, Peppelenbosch MP, Fuhler GM (2012). "Linking risk conferring mutations in NCF4 to functional consequences in Crohn's disease". Gut. 61 (7): 1097, author reply 1097–8. doi:10.1136/gutjnl-2011-301344. PMID 22027479.
  9. Grandvaux N, Grizot S, Vignais PV, Dagher MC (Feb 1999). "The Ku70 autoantigen interacts with p40phox in B lymphocytes". J. Cell Sci. 112 ( Pt 4) (4): 503–13. PMID 9914162.
  10. Lapouge K, Smith SJ, Groemping Y, Rittinger K (Mar 2002). "Architecture of the p40-p47-p67phox complex in the resting state of the NADPH oxidase. A central role for p67phox". J. Biol. Chem. 277 (12): 10121–8. doi:10.1074/jbc.M112065200. PMID 11796733.
  11. Grizot S, Grandvaux N, Fieschi F, Fauré J, Massenet C, Andrieu JP, Fuchs A, Vignais PV, Timmins PA, Dagher MC, Pebay-Peyroula E (Mar 2001). "Small angle neutron scattering and gel filtration analyses of neutrophil NADPH oxidase cytosolic factors highlight the role of the C-terminal end of p47phox in the association with p40phox". Biochemistry. 40 (10): 3127–33. doi:10.1021/bi0028439. PMID 11258927.
  12. Sathyamoorthy M, de Mendez I, Adams AG, Leto TL (Apr 1997). "p40(phox) down-regulates NADPH oxidase activity through interactions with its SH3 domain". J. Biol. Chem. 272 (14): 9141–6. doi:10.1074/jbc.272.14.9141. PMID 9083043.
  13. Wientjes FB, Reeves EP, Soskic V, Furthmayr H, Segal AW (Nov 2001). "The NADPH oxidase components p47(phox) and p40(phox) bind to moesin through their PX domain". Biochem. Biophys. Res. Commun. 289 (2): 382–8. doi:10.1006/bbrc.2001.5982. PMID 11716484.

Further reading

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.