Order-5 120-cell honeycomb

In the geometry of hyperbolic 4-space, the order-5 120-cell honeycomb is one of five compact regular space-filling tessellations (or honeycombs). With Schläfli symbol {5,3,3,5}, it has five 120-cells around each face. It is self-dual.

Order-5 120-cell honeycomb
(No image)
TypeHyperbolic regular honeycomb
Schläfli symbol{5,3,3,5}
Coxeter diagram
4-faces {5,3,3}
Cells {5,3}
Faces {5}
Face figure {5}
Edge figure {3,5}
Vertex figure {3,3,5}
DualSelf-dual
Coxeter groupK4, [5,3,3,5]
PropertiesRegular

It is related to the (order-3) 120-cell honeycomb, and order-4 120-cell honeycomb. It is analogous to the order-5 dodecahedral honeycomb and order-5 pentagonal tiling.

Birectified order-5 120-cell honeycomb

The birectified order-5 120-cell honeycomb constructed by all rectified 600-cells, with octahedron and icosahedron cells, and triangle faces with a 5-5 duoprism vertex figure and has extended symmetry [[5,3,3,5]].

gollark: No, pavucontrol.
gollark: Open pavucontrol?
gollark: Well, it's a different problem.
gollark: Don't know what happened to firefox.
gollark: If you cancel the updating.

See also

  • List of regular polytopes

References

  • Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. ISBN 0-486-61480-8. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
  • Coxeter, The Beauty of Geometry: Twelve Essays, Dover Publications, 1999 ISBN 0-486-40919-8 (Chapter 10: Regular honeycombs in hyperbolic space, Summary tables II,III,IV,V, p212-213)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.