NN Serpentis

NN Serpentis (abbreviated NN Ser) is an eclipsing post-common envelope binary system approximately 1670 light-years away.[3] The system comprises an eclipsing white dwarf and red dwarf. The two stars orbit each other every 0.13 days.[3]

NN Serpentis

Rendering of NN Serpentis system
Observation data
Epoch J2000      Equinox J2000
Constellation Serpens
Right ascension  15h 52m 56.131s[1]
Declination +12° 54 44.68[1]
Apparent magnitude (V) +16.51[2]
Characteristics
Spectral type DAO1 / M4V[3]
Astrometry
Distance1670 ± 140 ly
(512 ± 43[3] pc)
Orbit[3]
Period (P)0.13008017141(17) d
Semi-major axis (a)0.934 ± 0.009 R
Eccentricity (e)0.0
Inclination (i)89.6 ± 0.2°
Semi-amplitude (K1)
(primary)
62.3 ± 1.9 km/s
Semi-amplitude (K2)
(secondary)
301 ± 3 km/s
Details[3]
White dwarf
Mass0.535 ± 0.012 M
Radius0.0211 ± 0.0002 R
Surface gravity (log g)7.47 ± 0.01 cgs
Temperature57000 ± 3000 K
Red dwarf
Mass0.111 ± 0.004 M
Radius0.149 ± 0.002 R
Other designations
NN Ser, PG 1550+131, WD 1550+130
Database references
SIMBADdata

Planetary system

A planetary system has been inferred to exist around NN Ser by several teams. All of these teams rely on the fact that Earth sits in the same plane as the NN Serpentis binary star system, so humans can see the larger red dwarf eclipse the white dwarf every 0.13 days. Astronomers are then able to use these frequent eclipses to spot a pattern of small but significant irregularities in the orbit of stars, which could be attributed to the presence and gravitational influence of circumbinary planets.

Chen (2009) used these "eclipse timing variations" to suggesting a putative orbital period spanning between 30 and 285 years and a minimum mass between 0.0043 and 0.18 Solar masses.[4]

In late 2009, Qian [5] estimated a minimum mass of 10.7 Jupiter masses and orbital period of 7.56 years for this planet, probably located at 3.29 Astronomical Units. This has since been disproven by further measurements of the eclipse times of the binary stars.[6]

In late 2009 and 2010, researchers from the UK (University of Warwick and the University of Sheffield), Germany (Georg-August-Universitat in Göttingen, Eberhard-Karls-Universitat in Tübingen), Chile (Universidad de Valparaíso), and the United States (University of Texas at Austin).[7] suggested that the eclipse timing variations are caused by two gas giant planets. The more massive gas giant is about 6 times the mass of Jupiter and orbits the binary star every 15.5 years, the other orbits every 7.75 years and is about 1.6 times the mass of Jupiter.

The NN Serpentis planetary system[8]
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
c 6.91 ± 0.54 MJ 5.38 ± 0.2 5660 ± 165 days 0
d 2.28 ± 0.38 MJ 3.39 ± 0.1 AU 2830 ± 130 days 0.2 ± 0.02
gollark: Using apiomathematics?
gollark: Measured how?
gollark: And how can you be sure it isn't just random noise and was really caused by the block?
gollark: I mean, obviously you would block me and measure the change in some variable for a bit, but *what*?
gollark: How do you plan to test your hypothesis?

See also

References

  1. Cutri, R. M.; et al. (2003). "2MASS All-Sky Catalog of Point Sources". VizieR On-line Data Catalog. 2246. Bibcode:2003yCat.2246....0C.
  2. Drake, A. J.; Graham, M. J.; Djorgovski, S. G.; Catelan, M.; Mahabal, A. A.; Torrealba, G.; García-Álvarez, D.; Donalek, C.; Prieto, J. L.; Williams, R.; Larson, S.; Christen Sen, E.; Belokurov, V.; Koposov, S. E.; Beshore, E.; Boattini, A.; Gibbs, A.; Hill, R.; Kowalski, R.; Johnson, J.; Shelly, F. (2014). "The Catalina Surveys Periodic Variable Star Catalog". The Astrophysical Journal Supplement Series. 213: 9. arXiv:1405.4290. Bibcode:2014ApJS..213....9D. doi:10.1088/0067-0049/213/1/9.
  3. Parsons, S. G.; Marsh, T. R.; Copperwheat, C. M.; Dhillon, V. S.; Littlefair, S. P.; Gänsicke, B. T.; Hickman, R. (2010). "Precise mass and radius values for the white dwarf and low mass M dwarf in the pre-cataclysmic binary NN Serpentis". Monthly Notices of the Royal Astronomical Society. 402 (4): 2591–2608. arXiv:0909.4307. Bibcode:2010MNRAS.402.2591P. doi:10.1111/j.1365-2966.2009.16072.x.
  4. Chen (2009). "Can angular momentum loss cause the period change of NN Ser?". Astronomy and Astrophysics. 499: L1–L3. arXiv:0904.2319. Bibcode:2009A&A...499L...1C. doi:10.1051/0004-6361/200911638.
  5. Qian (2009). "A SUBSTELLAR COMPANION TO THE WHITE DWARF-RED DWARF ECLIPSING BINARY NN Ser". Cite journal requires |journal= (help)
  6. Parsons; et al. (2010). "Orbital Period Variations in Eclipsing Post Common Envelope Binaries". Monthly Notices of the Royal Astronomical Society. 407: 2362–2382. arXiv:1005.3958. Bibcode:2010MNRAS.407.2362P. doi:10.1111/j.1365-2966.2010.17063.x.
  7. K. Beuermann; et al. (October 2010). "Two planets orbiting the recently formed post-common envelope binary NN Serpentis". Astronomy & Astrophysics. 521. arXiv:1010.3608. Bibcode:2010A&A...521L..60B. doi:10.1051/0004-6361/201015472.
  8. Schneider, J. "Notes for star NN Ser". The Extrasolar Planets Encyclopaedia. Archived from the original on 2010-10-15. Retrieved 2010-10-22.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.