Mass dimension one fermions

In theoretical physics and cosmology the mass dimension one fermions of spin one half are a dark matter candidate. These fermions are fundamentally different from the hitherto known matter particles, like electrons or neutrinos. Despite being endowed with spin one half they are not described by the celebrated Dirac formalism but, instead, by a spinorial Klein-Gordon formalism.

In 2004 Dharam Vir Ahluwalia (IIT Guwahati) in collaboration with Daniel Grumiller presented an unexpected theoretical discovery of spin one-half fermions with mass dimension one.[1][2] In the decade that followed a significant number of groups explored intriguing mathematical and physical properties of the new construct while Ahluwalia and his students developed the formalism further.[3][4][5][6][7][8][9][10][11][12][13][14][15][16]

However, the formalism suffered from two troubling features, that of non-locality and a subtle violation of Lorentz symmetry. The origin of both of these issues has now been traced to a hidden freedom in the definition of duals of spinors and the associated field adjoints.[17] As a result there now exists an entirely new quantum theory of spin one-half fermions that is free from all the mentioned issues. The interactions of the new fermions are restricted to dimension-four quartic self interaction, and also to a dimension-four coupling with the Higgs. A generalised Yukawa coupling of the new fermions with neutrinos provides an hitherto unsuspected source of lepton-number violation. The new fermions thus present a first-principle dark matter partner to Dirac fermions of the standard model with contrasting mass dimensions — that of three halves for the latter versus one of the former without mutating the statistics from fermionic to bosonic.

Mass dimension one fermionic field of spin one half uses ELKO as its expansion coefficients. ELKO is an acronym of the original German term "Eigenspinoren des Ladungskonjugationsoperators", designating spinors that are eigenspinors of the charge conjugation operator.

Since the new fermions have a mass dimensionality mismatch with standard model matter fields they were suggested as a dark matter candidate. As a result of their scalar-like mass dimension they differ significantly from the mass dimension 3/2 Dirac fermions.[18]

Mass dimension one fermions have unexpected implications for cosmology by providing first principle dark matter and dark energy fields. Immediately after the publication of the Ahluwalia-Grumiller papers in 2005, Christian Boehmer pioneered application of Elko to cosmology and argued that Elko "are not only prime dark matter candidates but also prime candidates for inflation."[19] Einstein–Cartan–Elko system was first introduced in cosmology by Boehmer.[20] Saulo Pereira and colleagues have shown that Elko can also induce a time varying cosmological constant.[21] Abhishek Basak and colleagues have argued that the fast-roll inflation attractor point is unique for Elko and it is independent of the form of the potential.[22][23][24] Roldao da Rocha has argued that Elko can also be used as a tool for probing exotic topological features of spacetime.[25] Elko localization on the branes has been investigated in,[26][27] and.[28] The following references serve as a guide to the lively activity on Elko, and mass dimension one fermions:[29][30][31][32][33][34][35][36][37][38][39][40][41][42][43][44][45][46]

Earlier history of Elko is summarized in references:[47][48][49][50] and [51].

How Weinberg no go theorem is evaded is explained by Ahluwalia in 2017.[52] Also in 2017[53], it was shown that mass-dimension-one fermions, even in the absence of a cosmological constant, can induce a 'cosmological constant' term by quantum effects. These effects, leading to the non-vanishing Λ could be responsible for the inflationary phase at early universe stages. Furthermore, for the late time evolution, corresponding to a model with a time varying cosmological term, such quantum effects are in agreement with a previous recent work.[54]

Detailed discussion of the subject can be found in.[55]

References

  1. Ahluwalia-Khalilova, D. V.; Grumiller, D. (2005). "Spin-half fermions with mass dimension one: Theory, phenomenology, and dark matter". Journal of Cosmology and Astroparticle Physics. 2005 (7): 012. arXiv:hep-th/0412080. Bibcode:2005JCAP...07..012A. doi:10.1088/1475-7516/2005/07/012. S2CID 228040.
  2. Ahluwalia-Khalilova, D. V.; Grumiller, D. (2005). "Dark matter: A spin one-half fermion field with mass dimension one?". Physical Review D. 72 (6): 067701. arXiv:hep-th/0410192. Bibcode:2005PhRvD..72f7701A. doi:10.1103/PhysRevD.72.067701. S2CID 5855098.
  3. Ahluwalia, Dharam Vir; Nayak, Alekha Chandra (2014). "Elko and mass dimension one field of spin one-half: Causality and Fermi statistics". International Journal of Modern Physics D. 23 (14). arXiv:1502.01940. Bibcode:2014IJMPD..2330026A. doi:10.1142/S0218271814300262. S2CID 119130382.
  4. Ahluwalia, D.V.; Horvath, S.P. (2010). "Very special relativity as relativity of dark matter: The Elko connection". Journal of High Energy Physics. 2010 (11): 78. arXiv:1008.0436. Bibcode:2010JHEP...11..078A. doi:10.1007/JHEP11(2010)078. S2CID 53370627.
  5. Ahluwalia, D. V.; Lee, Cheng-Yang; Schritt, D. (2011). "Self-interacting Elko dark matter with an axis of locality". Physical Review D. 83 (6): 065017. arXiv:0911.2947. Bibcode:2011PhRvD..83f5017A. doi:10.1103/PhysRevD.83.065017. S2CID 119263916.
  6. Ahluwalia, D.V.; Lee, Cheng-Yang; Schritt, D. (2010). "Elko as self-interacting fermionic dark matter with axis of locality". Physics Letters B. 687 (2–3): 248–252. arXiv:0804.1854. Bibcode:2010PhLB..687..248A. doi:10.1016/j.physletb.2010.03.010. S2CID 115156929.
  7. Bernardini, A.E.; Da Rocha, Roldão (2012). "Dynamical dispersion relation for ELKO dark spinor fields". Physics Letters B. 717 (1–3): 238–241. arXiv:1203.1049. Bibcode:2012PhLB..717..238B. doi:10.1016/j.physletb.2012.09.004. S2CID 119743552.
  8. Da Rocha, R.; Rodrigues, W. A. (2006). "Where Are Elko Spinor Fields in Lounesto Spinor Field Classification?". Modern Physics Letters A. 21 (1): 65–74. arXiv:math-ph/0506075. Bibcode:2006MPLA...21...65D. doi:10.1142/S0217732306018482. S2CID 13130458.
  9. Da Rocha, R.; Hoff Da Silva, J. M. (2007). "From Dirac spinor fields to eigenspinoren des ladungskonjugationsoperators". Journal of Mathematical Physics. 48 (12): 123517. arXiv:0711.1103. Bibcode:2007JMP....48l3517D. doi:10.1063/1.2825840. S2CID 115165550.
  10. Fabbri, Luca (2012). "Conformal gravity with the most general ELKO matter". Physical Review D. 85 (4): 047502. arXiv:1101.2566. Bibcode:2012PhRvD..85d7502F. doi:10.1103/PhysRevD.85.047502. S2CID 119127249.
  11. Fabbri, L.; Vignolo, S. (2012). "The most general ELKO matter in torsional f(R)-theories". Annalen der Physik. 524 (2): 77–84. arXiv:1012.4282. Bibcode:2012AnP...524...77F. doi:10.1002/andp.201100006. S2CID 119165266.
  12. Fabbri, Luca (2011). "The most general cosmological dynamics for ELKO matter fields". Physics Letters B. 704 (4): 255–259. arXiv:1011.1637. Bibcode:2011PhLB..704..255F. doi:10.1016/j.physletb.2011.09.024. S2CID 118581436.
  13. Wunderle, K.E.; Dick, R. (2012). "A supersymmetric Lagrangian for fermionic fields with mass dimension one". Canadian Journal of Physics. 90 (12): 1185–1199. arXiv:1010.0963. Bibcode:2012CaJPh..90.1185W. doi:10.1139/p2012-075. S2CID 118353772.
  14. Fabbri, Luca (2011). "Zero energy of plane-waves for ELKOs". General Relativity and Gravitation. 43 (6): 1607–1613. arXiv:1008.0334. Bibcode:2011GReGr..43.1607F. doi:10.1007/s10714-011-1143-4. S2CID 119162784.
  15. Fabbri, Luca (2010). "CAUSALITY FOR ELKOs". Modern Physics Letters A. 25 (29): 2483–2488. arXiv:0911.5304. Bibcode:2010MPLA...25.2483F. doi:10.1142/S0217732310033712. S2CID 119196154.
  16. Da Rocha, R.; Da Silva, J. M. Hoff (2010). "ELKO, Flagpole and Flag-Dipole Spinor Fields, and the Instanton Hopf Fibration". Advances in Applied Clifford Algebras. 20 (3–4): 847–870. arXiv:0811.2717. doi:10.1007/s00006-010-0225-9. S2CID 115163234.
  17. Ahluwalia, Dharam Vir (2017). "The Theory of Local Mass Dimension One Fermions of Spin One Half". Advances in Applied Clifford Algebras. 27 (3): 2247–2285. arXiv:1601.03188. doi:10.1007/s00006-017-0775-1. S2CID 119178214.
  18. Dias, M.; De Campos, F.; Hoff Da Silva, J.M. (2012). "Exploring Elko typical signature". Physics Letters B. 706 (4–5): 352–359. arXiv:1012.4642. Bibcode:2012PhLB..706..352D. doi:10.1016/j.physletb.2011.11.030. S2CID 119279960.
  19. Boehmer, C.G. (2007). "The Einstein-Elko system – Can dark matter drive inflation?". Annalen der Physik. 16 (5–6): 325–341. arXiv:gr-qc/0701087. Bibcode:2007AnP...519..325B. doi:10.1002/andp.200610237. S2CID 119480739.
  20. Boehmer, C.G. (2007). "The Einstein–Cartan–Elko system". Annalen der Physik. 16 (1): 38–44. arXiv:gr-qc/0607088. Bibcode:2007AnP...519...38B. doi:10.1002/andp.200610216. S2CID 119333560.
  21. Pereira, S.H.; s.s, A. Pinho; Silva, J.M. Hoff da; Jesus, J.F. (2017). "Λ(t) cosmology induced by a slowly varying Elko field". Journal of Cosmology and Astroparticle Physics. 2017 (1): 055. arXiv:1608.02777. Bibcode:2017JCAP...01..055P. doi:10.1088/1475-7516/2017/01/055. S2CID 118584726.
  22. Basak, Abhishek; Bhatt, Jitesh R.; Shankaranarayanan, S.; Varma, K.V. Prasantha (2013). "Attractor behaviour in ELKO cosmology". Journal of Cosmology and Astroparticle Physics. 2013 (4): 025. arXiv:1212.3445. Bibcode:2013JCAP...04..025B. doi:10.1088/1475-7516/2013/04/025. S2CID 118571046.
  23. Mohseni Sadjadi, H. Mohseni (2012). "On coincidence problem in ELKO dark energy model". General Relativity and Gravitation. 44 (9): 2329–2336. arXiv:1109.1961. Bibcode:2012GReGr..44.2329S. doi:10.1007/s10714-012-1392-x. S2CID 123422242.
  24. Pereira, S.H.; s.s, A. Pinho; Silva, J.M. Hoff da (2014). "Some remarks on the attractor behaviour in ELKO cosmology". Journal of Cosmology and Astroparticle Physics. 2014 (8): 020. arXiv:1402.6723. Bibcode:2014JCAP...08..020P. doi:10.1088/1475-7516/2014/08/020. S2CID 119179830.
  25. Da Rocha, Roldão; Hoff Da Silva, J. M.; Bernardini, Alex E. (2011). "Elko Spinor Fields as a Tool for Probing Exotic Topological Spacetime Features". International Journal of Modern Physics: Conference Series. 03: 133–142. Bibcode:2011IJMPS...3..133D. doi:10.1142/S201019451100122X.
  26. Jardim, I. C.; Alencar, G.; Landim, R. R.; Costa Filho, R. N. (2015). "Solutions to the problem of Elko spinor localization in brane models". Physical Review D. 91 (8): 085008. arXiv:1411.6962. Bibcode:2015PhRvD..91h5008J. doi:10.1103/PhysRevD.91.085008. S2CID 118438003.
  27. Liu, Yu-Xiao; Zhou, Xiang-Nan; Yang, Ke; Chen, Feng-Wei (2012). "Localization of 5D Elko spinors on Minkowski branes". Physical Review D. 86 (6): 064012. arXiv:1107.2506. Bibcode:2012PhRvD..86f4012L. doi:10.1103/PhysRevD.86.064012. S2CID 119275536.
  28. Li, Yan-Yan; Zhang, Yu-Peng; Guo, Wen-Di; Liu, Yu-Xiao (2017). "Fermion localization mechanism with derivative geometrical coupling on branes". Physical Review D. 95 (11): 115003. arXiv:1701.02429. Bibcode:2017PhRvD..95k5003L. doi:10.1103/PhysRevD.95.115003. S2CID 119034294.
  29. Pereira, S.H.; s.s, A. Pinho; Silva, J.M. Hoff da; Jesus, J.F. (2017). "Λ(t) cosmology induced by a slowly varying Elko field". Journal of Cosmology and Astroparticle Physics. 2017 (1): 055. arXiv:1608.02777. Bibcode:2017JCAP...01..055P. doi:10.1088/1475-7516/2017/01/055. S2CID 118584726.
  30. Basak, Abhishek; Shankaranarayanan, S. (2015). "Super-inflation and generation of first order vector perturbations in ELKO". Journal of Cosmology and Astroparticle Physics. 2015 (5): 034. arXiv:1410.5768. Bibcode:2015JCAP...05..034B. doi:10.1088/1475-7516/2015/05/034. S2CID 119181181.
  31. Lee, Joohan; Lee, Tae Hoon; Oh, Phillial (2014). "Inflation driven by dark spinor and Higgs fields". International Journal of Modern Physics D. 23 (14). Bibcode:2014IJMPD..2344006L. doi:10.1142/S0218271814440064.
  32. Dos Santos Souza, A. P.; Pereira, S. H.; Jesus, J. F. (2015). "A new approach on the stability analysis in ELKO cosmology". The European Physical Journal C. 75: 36. Bibcode:2015EPJC...75...36D. doi:10.1140/epjc/s10052-015-3260-9. S2CID 118838898.
  33. Agarwal, Bakul; Jain, Pankaj; Mitra, Subhadip; Nayak, Alekha C.; Verma, Ravindra K. (2015). "ELKO fermions as dark matter candidates". Physical Review D. 92 (7): 075027. arXiv:1407.0797. Bibcode:2015PhRvD..92g5027A. doi:10.1103/PhysRevD.92.075027. S2CID 119116051.
  34. Hoff da Silva, J.M. Hoff da; Pereira, S.H. (2014). "Exact solutions to Elko spinors in spatially flat Friedmann-Robertson-Walker spacetimes". Journal of Cosmology and Astroparticle Physics. 2014 (3): 009. arXiv:1401.3252. Bibcode:2014JCAP...03..009H. doi:10.1088/1475-7516/2014/03/009. S2CID 119205683.
  35. Kouwn, Seyen; Lee, Joohan; Lee, TAE Hoon; Oh, Phillial (2013). "Elko Spinor Model with Torsion and Cosmology". Modern Physics Letters A. 28 (29). arXiv:1211.2981. Bibcode:2013MPLA...2850121K. doi:10.1142/S0217732313501216. S2CID 119292036.
  36. Lee, Joohan; Lee, Tae Hoon; Oh, Phillial (2012). "Conformally coupled dark spinor and FRW universe". Physical Review D. 86 (10): 107301. arXiv:1206.2263. Bibcode:2012PhRvD..86j7301L. doi:10.1103/PhysRevD.86.107301. S2CID 118690215.
  37. Boehmer, Christian G.; Burnett, James; Mota, David F.; Shaw, Douglas J. (2010). "Dark spinor models in gravitation and cosmology". Journal of High Energy Physics. 2010 (7): 53. arXiv:1003.3858. Bibcode:2010JHEP...07..053B. doi:10.1007/JHEP07(2010)053. S2CID 119224409.
  38. Wei, Hao (2011). "Spinor dark energy and cosmological coincidence problem". Physics Letters B. 695 (1–4): 307–311. arXiv:1002.4230. Bibcode:2011PhLB..695..307W. doi:10.1016/j.physletb.2010.10.053. S2CID 119190013.
  39. Boehmer, Christian G.; Burnett, James (2008). "Dark spinors with torsion in cosmology". Physical Review D. 78 (10): 104001. arXiv:0809.0469. Bibcode:2008PhRvD..78j4001B. doi:10.1103/PhysRevD.78.104001. S2CID 118675067.
  40. Gredat, Damien; Shankaranarayanan, S. (2010). "Modified scalar and tensor spectra in spinor driven inflation". Journal of Cosmology and Astroparticle Physics. 2010 (1): 008. arXiv:0807.3336. Bibcode:2010JCAP...01..008G. doi:10.1088/1475-7516/2010/01/008. S2CID 118673796.
  41. Pereira, S.H.; Guimarães, T.M. (2017). "From inflation to recent cosmic acceleration: The fermionic Elko field driving the evolution of the universe". Journal of Cosmology and Astroparticle Physics. 2017 (9): 038. arXiv:1702.07385. Bibcode:2017JCAP...09..038P. doi:10.1088/1475-7516/2017/09/038. S2CID 119353907.
  42. Boehmer, Christian G.; Mota, David F. (2008). "CMB anisotropies and inflation from non-standard spinors". Physics Letters B. 663 (3): 168–171. arXiv:0710.2003. Bibcode:2008PhLB..663..168B. doi:10.1016/j.physletb.2008.04.008. S2CID 119169294.
  43. Chaves, Max; Singleton, Douglas (2008). "A Unified Model of Phantom Energy and Dark Matter". Symmetry, Integrability and Geometry: Methods and Applications. 4: 009. arXiv:0801.4728. Bibcode:2008SIGMA...4..009C. doi:10.3842/SIGMA.2008.009. S2CID 718747.
  44. Boehmer, Christian G. (2008). "Dark spinor inflation: Theory primer and dynamics". Physical Review D. 77 (12): 123535. arXiv:0804.0616. Bibcode:2008PhRvD..77l3535B. doi:10.1103/PhysRevD.77.123535. S2CID 14581543.
  45. Gredat, Damien; Shankaranarayanan, S. (2010). "Modified scalar and tensor spectra in spinor driven inflation". Journal of Cosmology and Astroparticle Physics. 2010 (1): 008. arXiv:0807.3336. Bibcode:2010JCAP...01..008G. doi:10.1088/1475-7516/2010/01/008. S2CID 118673796.
  46. Boehmer, Christian G.; Burnett, James (2008). "Dark spinors with torsion in cosmology". Physical Review D. 78 (10): 104001. arXiv:0809.0469. Bibcode:2008PhRvD..78j4001B. doi:10.1103/PhysRevD.78.104001. S2CID 118675067.
  47. Ahluwalia, D.V. (1996). "Theory of Neutral Particles: Mclennan-Case Construct for Neutrino, ITS Generalization, and a New Wave Equation". International Journal of Modern Physics A. 11 (10): 1855–1874. arXiv:hep-th/9409134. Bibcode:1996IJMPA..11.1855A. doi:10.1142/S0217751X96000973. S2CID 14303799.
  48. Ahluwalia, D. V. (2002). "Evidence for Majorana Neutrinos: Dawn of a new era in spacetime structure". arXiv:hep-ph/0212222. Bibcode:2002hep.ph...12222A. Cite journal requires |journal= (help)
  49. Ahluwalia-Khalilova, D. V. (2003). "Extended set of Majorana spinors, a new dispersion relation, and a preferred frame". arXiv:hep-ph/0305336. Bibcode:2003hep.ph....5336A. Cite journal requires |journal= (help)
  50. Dvoeglazov, Valeri V. (1995). "Neutral particles in light of the Majorana-Ahluwalia ideas". International Journal of Theoretical Physics. 34 (12): 2467–2490. arXiv:hep-th/9504158. Bibcode:1995IJTP...34.2467D. doi:10.1007/BF00670779. S2CID 15605653.
  51. Dvoeglazov, Valeri V. (1995). "Neutral particles in light of the Majorana-Ahluwalia ideas". International Journal of Theoretical Physics. 34 (12): 2467–2490. arXiv:hep-th/9504158. Bibcode:1995IJTP...34.2467D. doi:10.1007/BF00670779. S2CID 15605653.
  52. Vir Ahluwalia, Dharam (2017). "Evading Weinberg's no-go theorem to construct mass dimension one fermions: Constructing darkness". Epl (Europhysics Letters). 118 (6): 60001. arXiv:1605.04224. Bibcode:2017EL....11860001V. doi:10.1209/0295-5075/118/60001. S2CID 119180583.
  53. Bueno Rogerio, R.J.; Hoff Da Silva, J.M.; Dias, M.; Pereira, S.H. (2018). "Effective lagrangian for a mass dimension one fermionic field in curved spacetime". Journal of High Energy Physics. 2018 (2): 145. arXiv:1709.08707. Bibcode:2018JHEP...02..145B. doi:10.1007/JHEP02(2018)145. S2CID 119209980.
  54. Pereira, S.H.; s.s, A. Pinho; Silva, J.M. Hoff da; Jesus, J.F. (2017). "Λ(t) cosmology induced by a slowly varying Elko field". Journal of Cosmology and Astroparticle Physics. 2017 (1): 055. arXiv:1608.02777. Bibcode:2017JCAP...01..055P. doi:10.1088/1475-7516/2017/01/055. S2CID 118584726.
  55. Ahluwalia, Dharam (2019). Mass Dimension One Fermions. doi:10.1017/9781316145593. ISBN 9781316145593.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.