Levenshtein coding

Levenstein coding, or Levenshtein coding, is a universal code encoding the non-negative integers developed by Vladimir Levenshtein.[1][2]

Encoding

The code of zero is "0"; to code a positive number:

  1. Initialize the step count variable C to 1.
  2. Write the binary representation of the number without the leading "1" to the beginning of the code.
  3. Let M be the number of bits written in step 2.
  4. If M is not 0, increment C, repeat from step 2 with M as the new number.
  5. Write C "1" bits and a "0" to the beginning of the code.

The code begins:

NumberEncodingImplied probability
001/2
1101/4
2110 01/16
3110 11/16
41110 0 001/128
51110 0 011/128
61110 0 101/128
71110 0 111/128
81110 1 0001/256
91110 1 0011/256
101110 1 0101/256
111110 1 0111/256
121110 1 1001/256
131110 1 1011/256
141110 1 1101/256
151110 1 1111/256
1611110 0 00 00001/4096
1711110 0 00 00011/4096

To decode a Levenstein-coded integer:

  1. Count the number of "1" bits until a "0" is encountered.
  2. If the count is zero, the value is zero, otherwise
  3. Start with a variable N, set it to a value of 1 and repeat count minus 1 times:
  4. Read N bits, prepend "1", assign the resulting value to N

The Levenstein code of a positive integer is always one bit longer than the Elias omega code of that integer. However, there is a Levenstein code for zero, whereas Elias omega coding would require the numbers to be shifted so that a zero is represented by the code for one instead.

Example code

Encoding

void levenshteinEncode(char* source, char* dest)
{
    IntReader intreader(source);
    BitWriter bitwriter(dest);
    while (intreader.hasLeft())
    {
        int num = intreader.getInt();
        if (num == 0)
            bitwriter.outputBit(0);
        else
        {
            int c = 0;
            BitStack bits;
            do {
                int m = 0;
                for (int temp = num; temp > 1; temp>>=1)  // calculate floor(log2(num))
                    ++m;
                for (int i=0; i < m; ++i)
                    bits.pushBit((num >> i) & 1);
                num = m;
                ++c;
            } while (num > 0);
            for (int i=0; i < c; ++i)
                bitwriter.outputBit(1);
            bitwriter.outputBit(0);
            while (bits.length() > 0)
                bitwriter.outputBit(bits.popBit());
        }
    }
}

Decoding

void levenshteinDecode(char* source, char* dest)
{
    BitReader bitreader(source);
    IntWriter intwriter(dest);
    while (bitreader.hasLeft())
    {
        int n = 0;
        while (bitreader.inputBit())     // potentially dangerous with malformed files.
            ++n;
        int num;
        if (n == 0)
            num = 0;
        else
        {
            num = 1;
            for (int i = 0; i < n-1; ++i)
            {
                int val = 1;
                for (int j = 0; j < num; ++j)
                    val = (val << 1) | bitreader.inputBit();
                num = val;
            }
        }
        intwriter.putInt(num);           // write out the value
    }
    bitreader.close();
    intwriter.close();
}
gollark: I am mostly okay with the United Kingdom.
gollark: Some countries have fewer issues.
gollark: Why notNOT BE IN POLAND™?
gollark: Humans are just really really bad at randomness.
gollark: I've built up immunity to the "breathing manually" thing through repeated exposure.

See also

References

  1. "1968 paper by V. I. Levenshtein (in Russian)" (PDF).
  2. David Salomon (2007). Variable-length codes for data compression. Springer. p. 80. ISBN 978-1-84628-958-3.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.