K2-28

K2-28 is a metal rich M4-type main sequence star. One confirmed transiting exoplanet is known to orbit this star. There is another star 5.2 arcseconds to the north–east of K2-28 however this star has a different proper motion and is therefore physically unrelated and probably a background star.[4]

K2-28
Observation data
Epoch J2000      Equinox J2000
Constellation Aquarius[1]
Right ascension  22h 22m 29.8612s[2]
Declination −07° 57 19.8535[2]
Apparent magnitude (V) 16.06[3]
Characteristics
Spectral type M4V[4][5]
Apparent magnitude (J) 11.695±0.030[6]
Apparent magnitude (H) 11.028±0.023[6]
Apparent magnitude (K) 10.746±0.023[6]
Variable type Planetary transit variable[4]
Astrometry
Radial velocity (Rv)11.7[5] km/s
Proper motion (μ) RA: −254.655±0.136[2] mas/yr
Dec.: −194.551±0.109[2] mas/yr
Parallax (π)15.8456 ± 0.0799[2] mas
Distance206 ± 1 ly
(63.1 ± 0.3 pc)
Details[4]
Mass0.257±0.048 M
Radius0.288±0.028 R
Surface gravity (log g)4.93±0.04 cgs
Temperature3214±60 K
Metallicity [Fe/H]0.26±0.10 dex
Other designations
Gaia DR2 2622296783699476864, LP 700-6, NLTT 53655, EPIC 206318379[7]
Database references
SIMBADdata

Planetary system

Discovery

K2-28b was first noticed as a candidate extrasolar planet by Vanderburg et al. in 2016, who, in a search of 59,174 stars from the Kepler space telescope's first year of K2 observations, found 234 planetary candidates.[8] Shortly thereafter the K2-ESPRINT Project confirmed that the candidate was a super-Earth sized planet in a close orbit around a red dwarf star.[4]

K2-28 transit light curve from the Spitzer Space Telescope.[3]

Characteristics

K2-28b is a sub-Neptune sized planet orbiting its star in only 2.26 days. Despite its short orbital period the equilibrium temperature of the planet is a relatively low 500 Kelvin due to the low luminosity of the parent star.[4] Because of the very small size of the parent star this planet is a particularly favorable target for transmission spectroscopy by the James Webb Space Telescope which should be able to determine if the atmosphere is cloudy or clear by observing roughly 5 transits.[9] Among a group of small and cool planets orbiting relatively bright M-dwarfs its predicted secondary eclipse depth of 230 parts-per-million is second only to Gliese 1214 b.[3]

Secondary eclipse depth vs. temperature of small and cool planets orbiting relatively bright M-dwarfs[3]
The K2-28 planetary system[9]
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
K2-28b 7.18+5.92
−3.08
(estimate) M
0.0191+0.0037
−0.0029
2.2604455±0.0000010 0 87.1+0.90
−0.74
°
2.56+0.27
−0.26
 R
gollark: Well, Windows/Linux don't mostly-require expensive and yet poorly designed hardware.
gollark: Or other insanely expensive stuff like Razer products.
gollark: Imagine buying Apple products.
gollark: I've been pleasantly surprised by Android today. I had some weird issue with the ROM I'm using and it only required 10 minutes of digging through random github issues and adjusting random configuration parameters (which you need root to do because of course) to fix!
gollark: I think it's primarily done on GPUs these days.

References

  1. Roman, Nancy G. (1987). "Identification of a Constellation From a Position". Publications of the Astronomical Society of the Pacific. 99 (617): 695–699. Bibcode:1987PASP...99..695R. doi:10.1086/132034. Vizier query form
  2. Brown, A. G. A.; et al. (Gaia collaboration) (August 2018). "Gaia Data Release 2: Summary of the contents and survey properties". Astronomy & Astrophysics. 616. A1. arXiv:1804.09365. Bibcode:2018A&A...616A...1G. doi:10.1051/0004-6361/201833051. Gaia DR2 record for this source at VizieR.
  3. Chen, Ge; et al. (2018). "An Improved Transit Measurement for a 2.4 R ⊕ Planet Orbiting A Bright Mid-M Dwarf K2–28". The Astronomical Journal. 155 (5). 223. arXiv:1801.10177. Bibcode:2018AJ....155..223C. doi:10.3847/1538-3881/aabd75.
  4. Hirano, Teruyuki; et al. (2016). "The K2-ESPRINT Project III: A Close-in Super-Earth around a Metal-rich Mid-M Dwarf". The Astrophysical Journal. 820 (1). 41. arXiv:1511.08508. Bibcode:2016ApJ...820...41H. doi:10.3847/0004-637X/820/1/41.
  5. Dressing, Courtney D.; et al. (2017). "Characterizing K2 Candidate Planetary Systems Orbiting Low-mass Stars. I. Classifying Low-mass Host Stars Observed during Campaigns 1–7". The Astrophysical Journal. 836 (2). 167. arXiv:1701.00586. Bibcode:2017ApJ...836..167D. doi:10.3847/1538-4357/836/2/167.
  6. Skrutskie, M. F.; et al. (2006). "The Two Micron All Sky Survey (2MASS)". The Astronomical Journal. 131 (2): 1163–1183. Bibcode:2006AJ....131.1163S. doi:10.1086/498708. Vizier catalog entry
  7. "K2-28". SIMBAD. Centre de données astronomiques de Strasbourg. Retrieved 2019-08-12.
  8. Vanderburg, Andrew; et al. (2016). "Planetary Candidates from the First Year of the K2 Mission". The Astrophysical Journal Supplement Series. 222 (1). 14. arXiv:1511.07820. Bibcode:2016ApJS..222...14V. doi:10.3847/0067-0049/222/1/14.
  9. Stefansson, Gudmundur; et al. (2018). "Diffuser-assisted Photometric Follow-up Observations of the Neptune-sized Planets K2-28b and K2-100b". The Astronomical Journal. 156 (6). 266. arXiv:1807.04420. Bibcode:2018AJ....156..266S. doi:10.3847/1538-3881/aae6ca.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.