Homologation reaction

A homologation reaction, also known as homologization, is any chemical reaction that converts the reactant into the next member of the homologous series. A homologous series is a group of compounds that differ by a constant unit, generally a (-CH2-) group. The reactants undergo a homologation when the number of a repeated structural unit in the molecules is increased. The most common homologation reactions increase the number of methylene (-CH2-) units in saturated chain within the molecule.[1] For example, the reaction of aldehydes or ketones with diazomethane or methoxymethylenetriphenylphosphine to give the next homologue in the series.

Examples of homologation reactions include:

  • Kiliani-Fischer synthesis, where an aldose molecule is elongated through a three-step process consisting of:
    1. Nucleophillic addition of cyanide to the carbonyl to form a cyanohydrin
    2. Hydrolysis to form a lactone
    3. Reduction to form the homologous aldose
  • Wittig reaction of an aldehyde with methoxymethylenetriphenylphosphine, which produces a homologous aldehyde.
  • Arndt–Eistert reaction is a series of chemical reactions designed to convert a carboxylic acid to a higher carboxylic acid homologue (i.e. contains one additional carbon atom)
  • Kowalski ester homologation, an alternative to the Arndt-Eistert synthesis. Has been used to convert β-amino esters from α-amino esters through an ynolate intermediate.[2]
  • Seyferth–Gilbert homologation in which an aldehyde is converted to a terminal alkyne and then hydrolyzed back to an aldehyde.

Some reactions increase the chain length by more than one unit. For example, the following are considered two-carbon homologation reactions.

Chain reduction

Likewise the chain length can also be reduced:

Mechanistically oxidation causes ring-cleavage at the alkene group, extrusion of carbon dioxide in decarboxylation with subsequent ring-closure.
gollark: Real programmers use osmarkslisp™.
gollark: ```lisp (let (qsort xs cont) (cond ((= xs '()) (cont '())) (true (do (let h (head xs)) (let t (tail xs)) (let part_result (partition_rec t (lambda (x) (< x h)) '(() ()))) (qsort (head part_result) (lambda (ls) (qsort (snd part_result) (lambda (rs) (cont (+ ls (list h) rs)))))) )) ))```↑ provably optimal sorting algorithm
gollark: Well, in Haskell you would just use the highly efficient quicksort from somewhere.
gollark: Carbohydrates?
gollark: Oh no. I forgot how merge sort works. Oh apioid.

See also

References

  1. Encyclopedia of Inorganic Chemistry doi:10.1002/0470862106.id396
  2. D. Gray, C. Concellon and T. Gallagher (2004). "Kowalski Ester Homologation. Application to the Synthesis of β-Amino Esters". J. Org. Chem. 69 (14): 4849–4851. doi:10.1021/jo049562h. PMID 15230615.
  3. Vincent P. Hollander and T. F. Gallagher PARTIAL SYNTHESIS OF COMPOUNDS RELATED TO ADRENAL CORTICAL HORMONES. VII. DEGRADATION OF THE SIDE CHAIN OF CHOLANIC ACID J. Biol. Chem., Mar 1946; 162: 549 - 554 Link
  4. On the Oxidation of 2-Hydroxy-1,4-naphthoquinone Derivatives with Alkaline Potassium Permanganate Samuel C. Hooker J. Am. Chem. Soc. 1936; 58(7); 1174-1179. doi:10.1021/ja01298a030
  5. On the Oxidation of 2-Hydroxy-1,4-naphthoquinone Derivatives with Alkaline Potassium Permanganate. Part II. Compounds with Unsaturated Side Chains Samuel C. Hooker and Al Steyermark J. Am. Chem. Soc. 1936; 58(7); pp 1179 - 1181; doi:10.1021/ja01298a031
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.