Human coronavirus OC43

Human coronavirus OC43[1] (HCoV-OC43) is a member of the species Betacoronavirus 1, which infects humans and cattle.[2][3] The infecting coronavirus is an enveloped, positive-sense, single-stranded RNA virus which enters its host cell by binding to the N-acetyl-9-O-acetylneuraminic acid receptor.[4]

Human coronavirus OC43
Transmission electron micrograph of human coronavirus OC43
Virus classification
(unranked): Virus
Realm: Riboviria
Kingdom: Orthornavirae
Phylum: Pisuviricota
Class: Pisoniviricetes
Order: Nidovirales
Family: Coronaviridae
Genus: Betacoronavirus
Species:
Strain:
Human coronavirus OC43

OC43 is one of seven known coronaviruses to infect humans. It is one of the viruses responsible for the common cold.[5][6] It has, like other coronaviruses from genus Betacoronavirus, subgenus Embecovirus, an additional shorter spike protein called hemagglutinin esterase (HE).[7][2]

Virology

Four HCoV-OC43 genotypes (A to D), have been identified with genotype D most likely arising from genetic recombination. The complete genome sequencing of two genotype C and D strains and bootscan analysis shows recombination events between genotypes B and C in the generation of genotype D. Of 29 strains identified, none belong to the more ancient genotype A. Molecular clock analysis using spike and nucleocapsid genes dates the most recent common ancestor of all genotypes to the 1950s. Genotype B and C date to the 1980s. Genotype B to the 1990s, and genotype C to the late 1990s to early 2000s. The recombinant genotype D strains were detected as early as 2004.[5]

Comparison of HCoV-OC43 with the most closely related strain of Betacoronavirus 1 species, bovine coronavirus, indicated that they had a most recent common ancestor in the late 19th century, with several methods yielding most probable dates around 1890, leading authors to speculate that an introduction of the former strain to the human population might have caused the 1889–1890 flu pandemic.[8] HCoV-OC43 likely originated in rodents.[9]

HCoV-OC43 is one of seven coronaviruses known to infect humans. The other six are[10]:

Pathogenesis

Along with HCoV-229E, a species in the genus Alphacoronavirus, HCoV-OC43 are among the known viruses that cause the common cold. Both viruses can cause severe lower respiratory tract infections, including pneumonia in infants, the elderly, and immunocompromised individuals such as those undergoing chemotherapy and those with HIV/AIDS.[11][12][13]

Epidemiology

Coronaviruses have a worldwide distribution, causing 10–15% of common cold cases (the virus most commonly implicated in the common cold is a rhinovirus, found in 30–50% of cases).[14] Infections show a seasonal pattern with most cases occurring in the winter months.[15][14][16]

gollark: Stop nanodiscombobulating yourself.
gollark: <@154361670188138496> We can just make another standard.
gollark: DICTATORSHIP!
gollark: Oh, umwn, hi.
gollark: Ask the Kiwi Government of Kea'nu.

See also

References

  1. Lee, Paul. Molecular epidemiology of human coronavirus OC43 in Hong Kong (Thesis). The University of Hong Kong Libraries. doi:10.5353/th_b4501128. hdl:10722/131538.
  2. "Taxonomy browser (Betacoronavirus 1)". www.ncbi.nlm.nih.gov. Retrieved 2020-02-29.
  3. Lim, Yvonne Xinyi; Ng, Yan Ling; Tam, James P.; Liu, Ding Xiang (2016-07-25). "Human Coronaviruses: A Review of Virus–Host Interactions". Diseases. 4 (3): 26. doi:10.3390/diseases4030026. PMC 5456285. PMID 28933406. See Table 1.
  4. Li, Fang (2016-09-29). "Structure, Function, and Evolution of Coronavirus Spike Proteins". Annual Review of Virology. 3 (1): 237–261. doi:10.1146/annurev-virology-110615-042301. PMC 5457962. PMID 27578435. BCoV S1-NTD does not recognize galactose as galectins do. Instead, it recognizes 5-N-acetyl-9-O-acetylneuraminic acid (Neu5,9Ac2) (30, 43). The same sugar receptor is also recognized by human coronavirus OC43 (43, 99). OC43 and BCoV are closely related genetically, and OC43 might have resulted from zoonotic spillover of BCoV (100, 101).
  5. Lau, Susanna K. P.; Lee, Paul; Tsang, Alan K. L.; Yip, Cyril C. Y.; Tse, Herman; Lee, Rodney A.; So, Lok-Yee; Lau, Y.-L.; Chan, Kwok-Hung; Woo, Patrick C. Y.; Yuen, Kwok-Yung (2011). "Molecular Epidemiology of Human Coronavirus OC43 Reveals Evolution of Different Genotypes over Time and Recent Emergence of a Novel Genotype due to Natural Recombination". Journal of Virology. 85 (21): 11325–37. doi:10.1128/JVI.05512-11. PMC 3194943. PMID 21849456.
  6. Gaunt, E.R.; Hardie, A.; Claas, E.C.J.; Simmonds, P.; Templeton, K.E. (2010). "Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method". J Clin Microbiol. 48 (8): 2940–7. doi:10.1128/JCM.00636-10. PMC 2916580. PMID 20554810.
  7. Woo, Patrick C. Y.; Huang, Yi; Lau, Susanna K. P.; Yuen, Kwok-Yung (2010-08-24). "Coronavirus Genomics and Bioinformatics Analysis". Viruses. 2 (8): 1804–20. doi:10.3390/v2081803. PMC 3185738. PMID 21994708. In all members of Betacoronavirus subgroup A, a haemagglutinin esterase (HE) gene, which encodes a glycoprotein with neuraminate O-acetyl-esterase activity and the active site FGDS, is present downstream to ORF1ab and upstream to S gene (Figure 1).
  8. Vijgen, Leen; Keyaerts, Els; Moës, Elien; Thoelen, Inge; Wollants, Elke; Lemey, Philippe; Vandamme, Anne-Mieke; Van Ranst, Marc (2005). "Complete Genomic Sequence of Human Coronavirus OC43: Molecular Clock Analysis Suggests a Relatively Recent Zoonotic Coronavirus Transmission Event". Journal of Virology. 79 (3): 1595–1604. doi:10.1128/JVI.79.3.1595-1604.2005. PMC 544107. PMID 15650185.
  9. Fung, To Sing; Liu, Ding Xiang (2019). "Human Coronavirus: Host-Pathogen Interaction". Annual Review of Microbiology. 73: 529–557. doi:10.1146/annurev-micro-020518-115759. PMID 31226023.
  10. Leung, Daniel. "Coronaviruses (including SARS)". Infectious Disease Advisor. Decision Support in Medicine, LLC. Retrieved 1 August 2020.
  11. Wevers, Brigitte A.; Van Der Hoek, Lia (2009). "Recently Discovered Human Coronaviruses". Clinics in Laboratory Medicine. 29 (4): 715–724. doi:10.1016/j.cll.2009.07.007. PMC 7131583. PMID 19892230.
  12. Mahony, James B. (2007). "Coronaviruses". In Murray, Patrick R.; Baron, Ellen Jo; Jorgensen, James H.; Landry, Marie Louise; Pfaller, Michael A. (eds.). Manual of Clinical Microbiology (9th ed.). Washington D.C.: ASM Press. pp. 1414–23. ISBN 978-1-55581-371-0.
  13. Pyrc, K.; Berkhout, B.; Van Der Hoek, L. (2007). "Antiviral Strategies Against Human Coronaviruses". Infectious Disorders Drug Targets. 7 (1): 59–66. doi:10.2174/187152607780090757. PMID 17346212.
  14. Wat, Dennis (2004). "The common cold: A review of the literature". European Journal of Internal Medicine. 15 (2): 79–88. doi:10.1016/j.ejim.2004.01.006. PMC 7125703. PMID 15172021.
  15. Van Der Hoek, L (2007). "Human coronaviruses: What do they cause?". Antiviral Therapy. 12 (4 Pt B): 651–8. PMID 17944272.
  16. Kissler, Stephen M. (April 14, 2020). "Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period". Science: eabb5793. doi:10.1126/science.abb5793. PMC 7164482. PMID 32291278.CS1 maint: date and year (link)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.