GoLoco motif

GoLoco motif is a protein structural motif.[1][2][3]

GoLoco motif
crystal structure of human g[alpha]i1 bound to the goloco motif of rgs14
Identifiers
SymbolGoLoco
PfamPF02188
InterProIPR003109
SMARTGoLoco
SCOPe1kjy / SUPFAM

In heterotrimeric G-protein signalling, cell surface receptors (GPCRs) are coupled to membrane-associated heterotrimers comprising a GTP-hydrolyzing subunit G-alpha and a G-beta/G-gamma dimer. The inactive form contains the alpha subunit bound to GDP and complexes with the beta and gamma subunit. When the ligand is associated to the receptor, GDP is displaced from G-alpha and GTP is bound. The GTP/G-alpha complex dissociates from the trimer and associates to an effector until the intrinsic GTPase activity of G-alpha returns the protein to GDP bound form. Reassociation of GDP-bound G-alpha with G-beta/G-gamma dimer terminates the signal. Several mechanisms regulate the signal output at different stage of the G-protein cascade. Two classes of intracellular proteins act as inhibitors of G protein activation: GTPase activating proteins (GAPs), which enhance GTP hydrolysis (see PDOC50132), and guanine dissociation inhibitors (GDIs), which inhibit GDP dissociation. The GoLoco or G-protein regulatory (GPR) motif found in various G-protein regulators.[1][4] acts as a GDI on G-alpha(i).[2][5]

Structure

The crystal structure of the GoLoco motif in complex with G-alpha(i) has been solved.[6] It consists of three small alpha helices. The highly conserved Asp-Gln-Arg triad within the GoLoco motif participates directly in GDP binding by extending the arginine side chain into the nucleotide binding pocket, highly reminiscent of the catalytic arginine finger employed in GTPase-activating protein (see PDOC50238). This addition of an arginine in the binding pocket affects the interaction of GDP with G-alpha and therefore is certainly important for the GoLoco GDI activity.[6]

Examples

Some proteins known to contain a GoLoco motif are listed below:

  • Mammalian regulators of G-protein signaling 12 and 14 (RGS12 and RGS14), multifaceted signal transduction regulators.
  • Loco, the drosophila RGS12 homologue.
  • Mammalian Purkinje-cell protein-2 (Pcp2). It may function as a cell-type specific modulator for G protein-mediated cell signaling. It is uniquely expressed in cerebellar Purkinje cells and in retinal bipolar neurons.
  • Eukaryotic Rap1GAP. A GTPase activator for the nuclear ras-related regulatory protein RAP-1A.
  • Drosophila protein Rapsynoid (also known as Partner of Inscuteable, Pins) and its mammalian homologues, AGS3 and LGN. They form a G-protein regulator family that also contains TPR repeats.

Human proteins containing this domain include:

gollark: I imagine it could be done mostly automatically with sensors of some kind in the sewer and a way to infer who's in the relevant part of a house (phones maybe?).
gollark: Just write a program which receives a sorted list from the future and sends it to the past iff it contains all the elements you want and is sorted.
gollark: You could also do this with time travel if you have one of those always-consistent universes.
gollark: Great!
gollark: It's over there.

References

  1. Siderovski DP, Diversé-Pierluissi M, De Vries L (September 1999). "The GoLoco motif: a Galphai/o binding motif and potential guanine-nucleotide exchange factor". Trends Biochem. Sci. 24 (9): 340–1. doi:10.1016/s0968-0004(99)01441-3. PMID 10470031.
  2. De Vries L, Fischer T, Tronchère H, Brothers GM, Strockbine B, Siderovski DP, Farquhar MG (December 2000). "Activator of G protein signaling 3 is a guanine dissociation inhibitor for Galpha i subunits". Proc. Natl. Acad. Sci. U.S.A. 97 (26): 14364–9. doi:10.1073/pnas.97.26.14364. PMC 18924. PMID 11121039.
  3. Kimple RJ, Kimple ME, Betts L, Sondek J, Siderovski DP (April 2002). "Structural determinants for GoLoco-induced inhibition of nucleotide release by Galpha subunits". Nature. 416 (6883): 878–81. doi:10.1038/416878a. PMID 11976690.
  4. Ponting CP (1999). "Raf-like Ras/Rap-binding domains in RGS12- and still-life-like signalling proteins" (PDF). J. Mol. Med. 77 (10): 695–698. doi:10.1007/s001099900054. PMID 10606204.
  5. Artemyev NO, Natochin M, Lester B, Peterson YK, Bernard ML, Lanier SM (2000). "AGS3 inhibits GDP dissociation from galpha subunits of the Gi family and rhodopsin-dependent activation of transducin". J. Biol. Chem. 275 (52): 40981–40985. doi:10.1074/jbc.M006478200. PMID 11024022.
  6. Siderovski DP, Kimple RJ, Kimple ME, Betts L, Sondek J (2002). "Structural determinants for GoLoco-induced inhibition of nucleotide release by Galpha subunits". Nature. 416 (6883): 878–881. doi:10.1038/416878a. PMID 11976690.
This article incorporates text from the public domain Pfam and InterPro: IPR003109


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.