Stickleback

The Gasterosteidae are a family of fish including the sticklebacks. They are related to the pipefish and seahorses.

Sticklebacks
Four marine species of stickleback from the Atlantic Ocean coast of North America
Scientific classification
Kingdom:
Phylum:
Class:
Order:
Family:
Gasterosteidae
Genera

Apeltes
Culaea
Gasterosteus
Pungitius
Spinachia

Taxonomy

FishBase recognises 16 species in the family, grouped in five genera.[1] However, several of the species have a number of recognised subspecies, and the taxonomy of the family is thought to be in need of revision.

Although some authorities give the common name of the family as "sticklebacks and tube-snouts", the tube-snouts are classified in the related family Aulorhynchidae.

Genera

Genera include:

Description

Sticklebacks are endemic to the temperate zone[2] and are most commonly found in the ocean, but some can be found in fresh water. The freshwater taxa were trapped in Europe, Asia, and North America after the Ice Age 10,000-20,000 years ago, and have evolved features different from those of the marine species.

Sticklebacks are carnivorous, feeding on small animals such as insects, crustaceans and fish larvae.[3][4]

Sticklebacks are characterised by the presence of strong and clearly isolated spines in their dorsal fins.[5] An unusual feature of sticklebacks is that they have no scales, although some species have bony armour plates.

Sizes

The maximum size of the best-known species, the three-spined stickleback (Gasterosteus aculeatus), is about 4 inches, but few of them are more than 3 inches long. They mature sexually at a length of about 2 inches.[6] Most other stickleback species are roughly similar in size or somewhat smaller. The only exception is the far larger fifteen-spined stickleback (Spinachia spinachia), which can reach 22 cm (approx. 8.7 inches).[7] Body form varies with habitat: sticklebacks in shallow lakes have developed a deep body specialized to enable feeding on benthic invertebrates, whilst those in deep oligotrophic lakes have adapted to feed on plankton and have a more slimlined body.[2]

Personality

Research has shown that Sticklebacks display distinct personality traits, specifically in the area of taking risk and can be considered bold or shy. These personality traits were determined to directly influence if they would lead, and if discouraged, attempt to lead again.[8]

Mating

All stickleback species show similar, unusual mating behaviour. Freshwater males develop a red colouration, and although this may be seen in oceanic and benthic species these tend to remain dull-coloured. The male then constructs a nest from weeds held together by spiggin, a[2] kidney secretion, then attract females to the nest. Females signal their readiness to mate with solitary rather than shoaling behaviour, a head-up posture; their bellies are also obviously distended with eggs.[2] Courtship typically involves a zig-zag 'dance' where the male approaches the female in an erratic side-to-side pattern, and dorsal pricking of the female's abdomen.[2] A female lays her eggs inside the nest, where the male fertilises them. The male then guards the eggs until they hatch 7-14 days later (depending on temperature),[2] [4] and may continue to guard the fry after they hatch. This large investment in both the nesting site and guarding of the eggs limits the number of females a male can mate with however males spawn multiple times.[2] This introduces the ability for selection to favor male mate choice.[9] Some males die following spawning.[6]

Mating Choice

Typically, the sex with the greatest parental investment has the strongest mate preferences.[10] Stickleback species exhibit mutual mate choice in which both the male and female have strong mate preferences. This is due in part to the strong parental investment on behalf of the male in guarding the eggs.[11]

Female mate choice

Female sticklebacks show a strong preference to male stickleback with bright red coloration under their throats. Females mate both more often with males with brighter red coloration and give on average, larger eggs to be fertilized by these males. This preference has led to brighter red coloring.[12][13] This association is possible because the red coloration can only be produced by males that are free of parasites. This is referred to in the Hamilton-Zuk hypothesis.[14]

Female mate choice has also been seen to be condition dependent. Females are almost always the more choosy sex in most species. Female sticklebacks though, have been found to be less choosy of mates when in poor physical condition and inversely, more choosy in good condition.[15]

Male mate choice

In some species, such as the three-spined stickleback, the large investment in both nesting site and guarding of eggs by males limits the number of females a male can mate with.[16] This introduces the ability for selection to favor male mate choice. Male mate choice is rarely studied or observed in many species but multiple studies have confirmed male mate choice within stickleback species. Males show a choosiness similar to females as to what female they are willing to court and mate. Male sticklebacks have been observed to show preference towards female sticklebacks that are larger both in overall size and also in total length. This is believed to be because larger females on average produce larger eggs, which leads to a greater offspring survival and fitness.[11] In addition, male sticklebacks have also been observed to prefer females with more distended or bloated stomachs. The benefits of this is also due to larger eggs and thus offspring survival and fitness[17]

Use in science

Niko Tinbergen's studies of the behaviour of this fish were important in the early development of ethology as an example of a fixed action pattern. More recently, the fish have become a favourite system for studying the molecular genetics of evolutionary change in wild populations[18] and a powerful "supermodel" for combining evolutionary studies at molecular, developmental, population genetic, and ecological levels.[19] The nearly complete genome sequence of a reference freshwater stickleback was described in 2012, along with set of genetic variants commonly found in 21 marine and freshwater populations around the world. Some variants, and several chromosome inversions, consistently distinguish marine and freshwater populations, helping identify a genome-wide set of changes contributing to repeated adaptation of sticklebacks to marine and freshwater environments.[20]

gollark: This "e raid" thing seems dubiously useful.
gollark: It is longer ranged and provides XYZ data by default.
gollark: The entity scanner.
gollark: You do, in fact, need to convert booleans into other types when using them in some ways.
gollark: I think that's doable.

References

  1. Froese, Rainer, and Daniel Pauly, eds. (2012). "Gasterosteidae" in FishBase. October 2012 version.
  2. Foster, SUSAN A.; Cresko, WILLIAM A.; Johnson, KEVIN P.; Tlusty, MICHAEL U.; Willmott, HARLEIGH E. (1996-01-01), Sanderson, Michael J.; Hufford, Larry (eds.), "PATTERNS OF HOMOPLASY IN BEHAVIORAL EVOLUTION", Homoplasy, Academic Press, pp. 245–269, doi:10.1016/b978-012618030-5/50012-5, ISBN 978-0-12-618030-5, retrieved 2020-06-04
  3. The Repeater - NYTimes.com
  4. Orr, James W. & Pietsch, T.W. (1998). Paxton, J.R. & Eschmeyer, W.N. (eds.). Encyclopedia of Fishes. San Diego: Academic Press. pp. 171–172. ISBN 0-12-547665-5.
  5. Widespread Parallel Evolution in Sticklebacks by Repeated Fixation of Ectodysplasin Alleles by Science
  6. "Three-spined stickleback". Gma.org. Retrieved 2012-08-31.
  7. Froese, Rainer and Pauly, Daniel, eds. (2014). "Spinachia spinachia" in FishBase. April 2014 version.
  8. "Stickleback fish show initiative, personality and leadership". phys.org. Retrieved 2020-06-26.
  9. Sargent, Robert Craig; Gross, Mart R.; Van Den Berghe, Eric P. (1986-04-01). "Male mate choice in fishes". Animal Behaviour. 34 (2): 545–550. doi:10.1016/S0003-3472(86)80123-3. ISSN 0003-3472.
  10. Balshine, S.; Kempenaers, B.; Székely, T.; Kokko, H.; Johnstone, R. A. (2002-03-29). "Why is mutual mate choice not the norm? Operational sex ratios, sex roles and the evolution of sexually dimorphic and monomorphic signalling". Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences. 357 (1419): 319–330. doi:10.1098/rstb.2001.0926. PMC 1692955. PMID 11958700.
  11. Kraak, SARAH B. M; Bakker, THEO C. M (1998-10-01). "Mutual mate choice in sticklebacks: attractive males choose big females, which lay big eggs". Animal Behaviour. 56 (4): 859–866. doi:10.1006/anbe.1998.0822. ISSN 0003-3472. PMID 9790696.
  12. Barber, Iain; Arnott, Stephen A.; Braithwaite, Victoria A.; Andrew, Jennifer; Huntingford, Felicity A. (2001-01-07). "Indirect fitness consequences of mate choice in sticklebacks: offspring of brighter males grow slowly but resist parasitic infections". Proceedings of the Royal Society of London. Series B: Biological Sciences. 268 (1462): 71–76. doi:10.1098/rspb.2000.1331. PMC 1087602. PMID 12123300.
  13. Bakker, Theo C. M.; Mundwiler, Beat (1994-03-01). "Female mate choice and male red coloration in a natural three-spined stickleback (Gasterosteus aculeatus) population". Behavioral Ecology. 5 (1): 74–80. doi:10.1093/beheco/5.1.74. ISSN 1045-2249.
  14. Milinski, Manfred; Bakker, Theo C. M. (March 1990). "Female sticklebacks use male coloration in mate choice and hence avoid parasitized males". Nature. 344 (6264): 330–333. Bibcode:1990Natur.344..330M. doi:10.1038/344330a0. ISSN 1476-4687.
  15. Bakker, Theo C. M.; Künzler, Reto; Mazzi, Dominique (September 1999). "Condition-related mate choice in sticklebacks". Nature. 401 (6750): 234. doi:10.1038/45727. ISSN 1476-4687.
  16. Encyclopedia of fishes. Paxton, John R., Eschmeyer, William N. (2nd ed.). San Diego, CA: Academic Press. 1998. ISBN 0-12-547665-5. OCLC 39641701.CS1 maint: others (link)
  17. Rowland, William J. (1982-11-01). "Mate choice by male sticklebacks, Gasterosteus aculeatus". Animal Behaviour. 30 (4): 1093–1098. doi:10.1016/S0003-3472(82)80199-1. ISSN 0003-3472.
  18. Kingsley, D.M. and Peichel, C.L. (2007) The molecular genetics of evolutionary change in sticklebacks. in Biology of the three-spinestickleback. Ostlund-Nillson, S., Mayer, I. and Huntingford, F.A. (eds). CRC Press. pp. 41-81
  19. "The synthesis and evolution of a supermodel". Science. AAAS. 2005-03-25. Retrieved 2012-08-31.
  20. Jones, Felicity C.; Grabherr, Manfred G.; Chan, Yingguang Frank; Russell, Pamela; Mauceli, Evan; Johnson, Jeremy; Swofford, Ross; Pirun, Mono; Zody, Michael C.; White, Simon; Birney, Ewan; Searle, Stephen; Schmutz, Jeremy; Grimwood, Jane; Dickson, Mark C.; Myers, Richard M.; Miller, Craig T.; Summers, Brian R.; Knecht, Anne K.; Brady, Shannon D.; Zhang, Haili; Pollen, Alex A.; Howes, Timothy; Amemiya, Chris; Lander, Eric S.; Di Palma, Federica; Lindblad-Toh, Kerstin; Kingsley, David M.; Kingsley, D. M. (2012-04-04). "The genomic basis of adaptive evolution in threespine sticklebacks". Nature. 484 (7392): 55–61. Bibcode:2012Natur.484...55.. doi:10.1038/nature10944. PMC 3322419. PMID 22481358.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.