Flight deck

The flight deck of an aircraft carrier is the surface from which its aircraft take off and land, essentially a miniature airfield at sea. On smaller naval ships which do not have aviation as a primary mission, the landing area for helicopters and other VTOL aircraft is also referred to as the flight deck. The official U.S. Navy term for these vessels is "air-capable ships".[1]

Flight deck of USS John C. Stennis doing a high speed turn during her acceptance trials in 1995
Cars parked on an aircraft carrier flight deck

Flight decks have been in use upon ships since 1910, the American pilot Eugene Ely being the first individual to takeoff from a warship. Initially consisting of wooden ramps built over the forecastle of capital ships, a number of battlecruisers, including the British HMS Furious and Courageous class, the American USS Lexington and Saratoga, and the Japanese Akagi and battleship Kaga, were converted to aircraft carriers during the interwar period. The first aircraft carrier to feature a full-length flight deck, akin to the configuration of the modern vessels, was the converted liner HMS Argus. The armoured flight deck was another innovation pioneered by the Royal Navy during the 1930s. Early landing arrangements relied on the low speed and landing speed of the era's aircraft, being simply "caught" by a team of deck-hands in a fairly hazardous arrangement, but these became impractical as heavier aircraft with higher landing speeds emerged; thus an arrangement of arrestor cables and tailhooks soon became the favoured approach.

During the Cold War era, numerous innovations were introduced to the flight deck. The angled flight deck, invented by Dennis Cambell of the Royal Navy, was one prominent design feature that drastically simplified aircraft recovery and deck movements, enabling landing and launching operations to be performed simultaneously rather than interchangeably; it also better handled the higher landing speeds of jet-powered aircraft. In 1952, HMS Triumph became the first aircraft carrier to trial the angled flight deck. Another advance was the ski-jump, which fitted an angled ramp on the flight deck near the end of the aircraft's takeoff run; the change greatly reduced the distance required and became particularly useful for operating STOVL aircraft. Furthermore, various unsuccessful concepts to replace or compliment the conventional flight deck have emerged over the years, from the flexible flight deck to the submarine aircraft carrier and flying boat fighter aircraft.

Evolution

Eugene Ely's first landing, on the armored cruiser USS Pennsylvania

Early flight decks

The first flight decks were inclined wooden ramps built over the forecastle of warships. Eugene Ely made the first fixed-wing aircraft take-off from a warship from USS Birmingham on 14 November 1910.

Two months later, on 18 January 1911, Ely landed his Curtiss pusher plane on a platform on Pennsylvania anchored in San Francisco Bay using the first tailhook system, designed and built by circus performer and aviator Hugh Robinson. Ely told a reporter: "It was easy enough. I think the trick could be successfully turned nine times out of ten." On 9 May 1912,[2] Commander Charles Samson became the first man to take off from a ship which was underway when he flew his Short S.27 off HMS Hibernia, which was steaming at 10.5 kn (12.1 mph; 19.4 km/h).

Because the take-off speed of early aircraft was so low, it was possible for an aircraft to make a very short take off when the launching ship was steaming into the wind. Later, removable "flying-off platforms" appeared on the gun turrets of battleships and battlecruisers starting with HMS Repulse, allowing aircraft to be flown off for scouting purposes, although there was no chance of recovery.

On 2 August 1917, while performing trials, Squadron Commander Edwin Harris Dunning landed a Sopwith Pup successfully on board the flying-off platform of HMS Furious, becoming the first person to land an aircraft on a moving ship. However, on his third attempt, a tire burst as he attempted to land, causing the aircraft to go over the side, killing him; thus Dunning also has the dubious distinction of being the first person to die in an aircraft carrier landing accident.

The landing arrangements on Furious were highly unsatisfactory. In order to land, aircraft had to maneuver around the superstructure. Furious was therefore returned to dockyard hands to have a 300 ft (91 m) deck added aft for landing, on top of a new hangar. The central superstructure remained, however, and turbulence caused by it badly affected the landing deck.

Full length decks

HMS Argus showing the full-length flight deck from bow to stern
Flight deck resurfacing aboard USS Peleliu

The first aircraft carrier that began to show the configuration of the modern vessel was the converted liner HMS Argus, which had a large flat wooden deck added over the entire length of the hull, giving a combined landing and take-off deck unobstructed by superstructure turbulence. Because of her unobstructed flight deck, Argus had no fixed conning tower and no funnel. Rather, exhaust gases were trunked down the side of the ship and ejected under the fantail of the flight deck (which, despite arrangements to disperse the gases, gave an unwelcome "lift" to aircraft immediately prior to landing).

The lack of a command position and funnel was unsatisfactory, and Argus was used to experiment with various ideas to remedy the solution. A photograph in 1917 shows her with a canvas mock-up of a starboard "island" superstructure and funnel. This was placed on the starboard side because the rotary engines of some early aircraft created torque which pulled the nose left, meaning an aircraft naturally yawed to port on take-off; therefore, it was desirable that they turned away from the fixed superstructure. This became the typical aircraft carrier arrangement and was used in the next British carriers, Hermes and Eagle.

After World War I, battlecruisers that otherwise would have been discarded under the Washington Naval Treaty—such as the British HMS Furious and Courageous class, the American USS Lexington and Saratoga, and the Japanese Akagi and battleship Kaga—were converted to carriers along the above lines. Being large and fast they were perfectly suited to this role; the heavy armoring and scantlings and low speed of the converted battleship Eagle served to be something of a handicap in practice.

Because the military effectiveness of aircraft carriers was then unknown, early ships were typically equipped with cruiser-calibre guns to aid in their defense if surprised by enemy warships. These guns were generally removed in World War II and replaced with anti-aircraft guns, as carrier doctrine developed the "task force" (later called "battle group") model, where the carrier's defense against surface ships would be a combination of escorting warships and its own aircraft.

In ships of this configuration, the hangar deck was the strength deck and an integral part of the hull, and the hangar and light steel flight deck were considered to be part of the superstructure. Such ships were still being built into the late 1940s, classic examples being the U.S. Navy's Essex and Ticonderoga-class carriers. However, in 1936, the Royal Navy began construction of the Illustrious class.

In these ships, the flight deck was the strength deck, an integral part of the hull, and was heavily armored to protect the ship and her air complement. The flight deck as the strength deck was adopted for later construction. This was necessitated by the ever-increasing size of the ships, from the 13,000 ton USS Langley in 1922 to over 100,000 tons in the latest Nimitz-class and Gerald R. Ford-class carriers.

Armored decks

When aircraft carriers supplanted battleships as the primary fleet capital ship, there were two schools of thought on the question of armor protection being included into the flight deck. The United States Navy (USN) initially favored unarmored flight decks because they maximized aircraft carrier hangar and flight deck size, which in turn maximized aircraft capacity in the hangar, and on the flight deck, in the form of a permanent "deck park" for a large proportion of the aircraft carried.[3][4]

In 1936 the Royal Navy developed the armored flight deck aircraft carrier which also enclosed the hangar sides and ends with armor. The addition of armor to the flight deck offered aircraft below some protection against aerial bombs while the armored hangar sides and ends helped to minimize damage and casualties from explosions or fires within or outside the hangar.[5] The addition of armor to the hangar forced a reduction in top-weight, so the hangar height was reduced, and this restricted the types of aircraft that these ships could carry, although the Royal Navy's armored carriers did carry spare aircraft in the hangar overheads.[6]

The armor also reduced the length of the flight deck, reducing the maximum aircraft capacity of the armored flight deck aircraft carrier. Additionally, Royal Navy aircraft carriers did not use a permanent deck park until approximately 1943; before then the aircraft capacity of RN aircraft carriers was limited to their hangar capacity.

The 23,000-ton British Illustrious class had a hangar capacity for 36 Swordfish-sized aircraft and a single 458-by-62-by-16-foot (139.6 m × 18.9 m × 4.9 m) hangar, but carried up to 57[7] aircraft with a permanent deck park, while the 23,400-ton Implacable class featured increased hangar capacity with a 458-by-62-by-14-foot (139.6 m × 18.9 m × 4.3 m) upper hangar and the addition of a 208-by-62-by-14-foot (63.4 m × 18.9 m × 4.3 m) lower hangar, forward of the after elevator, which had a total capacity of 52 Swordfish-sized aircraft or a mix of 48 late-war aircraft in the hangar plus 24 aircraft in a permanent deck park,[8] but carried up to 81 aircraft with a deck park.[9]

The 27,500-ton USN Essex class had a 654-by-70-by-17.5-foot (199.3 m × 21.3 m × 5.3 m) hangar that was designed to handle a mix of 72 prewar USN aircraft.[10] but carried up to 104 late-war aircraft using both the hangar and a permanent deck park.[11][12] The experience of World War II caused the USN to change their design policy in favor of armored flight decks on much larger ships: "The main armor carried on Enterprise is the heavy armored flight deck. This was to prove a significant factor in the catastrophic fire and explosions that occurred on Enterprise's flight deck in 1969. The US Navy learned its lesson the hard way during World War II when all its carriers had only armored hangar decks. All attack carriers built since the Midway class have had armored flight decks."[13]

Landing on flight decks

A barricade is raised on USS Ronald Reagan. Barricade usage is a rare emergency measure.

Landing arrangements were originally primitive, with aircraft simply being "caught" by a team of deck-hands who would run out from the wings of the flight deck and grab a part of the aircraft to slow it down. This dangerous procedure was only possible with early aircraft of low weight and landing speed. Arrangements of nets served to catch the aircraft should the latter fail, although this was likely to cause structural damage. A non-skid deck surface is important to prevent aircraft from sliding on a wet deck as the ship rolls.

Landing larger and faster aircraft on a flight deck was made possible through the use of arresting cables installed on the flight deck and a tailhook installed on the aircraft. Early carriers had a very large number of arrestor cables or "wires". Current U.S. Navy carriers have three or four steel cables stretched across the deck at 20 ft (6.1 m) intervals which bring a plane, traveling at 150 mph (240 km/h), to a complete stop in about 320 ft (98 m).

The cables are set to stop each aircraft at the same place on the deck, regardless of the size or weight of the plane. During World War II, large net barriers would be erected across the flight deck so aircraft could be parked on the forward part of the deck and recovered on the after part. This allowed increased complements but resulted in a lengthened launch and recovery cycle as aircraft were shuffled around the carrier to allow take-off or landing operations.

A barricade is an emergency system used if a normal arrestment cannot be made. Barricade webbing engages the wings of the landing aircraft, and momentum is transferred to the arresting engine.

Cold War innovations

Angled flight deck

Animated representation of a missed approach on angled flight deck, Centaur class showing how the offset recovery area allows for simultaneous launch and recovery operations.

The angled flight deck was invented by Royal Navy Captain (later Rear Admiral) Dennis Cambell, as an outgrowth of design study initially begun in the winter of 1944–1945. A committee of senior Royal Navy officers decided that the future of naval aviation was in jets, whose higher speeds required that the carriers be modified to "fit" their needs.[14][15][16]

With this type of deck – also called a "skewed deck", "canted deck", "waist angle deck", or the "angle" – the aft part of the deck is widened, and a separate runway is positioned at an angle from the centreline.[17]

The angled flight deck was designed with the higher landing speeds of jet aircraft in mind, which would have required the entire length of a centreline flight deck to stop.[17] The design also allowed for concurrent launch and recovery operations, and allowed aircraft failing to connect with the arrestor cables to abort the landing, accelerate, and relaunch (bolter) without risk to other parked or launching aircraft.[17]

Representation of the Nimitz-class carrier USS Dwight D. Eisenhower illustrating how increasing the offset angle of a carrier's recovery area allows the use of two catapults during launch and recovery operations.

The redesign allowed for several other design and operational modifications, including the mounting of a larger island (improving both ship-handling and flight control), drastically simplified aircraft recovery and deck movement (aircraft now launched from the bow and re-embarked on the angle, leaving a large open area amidships for arming and fueling), and damage control. Because of its utility in flight operations, the angled deck is now a defining feature of STOBAR and CATOBAR equipped aircraft carriers.

The angled flight deck was first tested in 1952 on HMS Triumph by painting angled deck markings onto the centerline of the flight deck for touch-and-go landings.[17] This was also tested on USS Midway the same year.[18][19]

Despite the new markings, in both cases the arresting gear and barriers were still aligned with the centerline of the original deck. From September to December 1952, USS Antietam had a rudimentary sponson installed for true angled-deck tests, allowing for full arrested landings, which proved during trials to be superior.[18] In 1953, Antietam trained with both U.S. and British naval units, proving the worth of the angled-deck concept.[20] HMS Centaur was modified with overhanging angled flight deck in 1954.[17]

The U.S. Navy installed the decks as part of the SCB-125 upgrade for the Essex class and SCB-110/110A for the Midway class. In February 1955, HMS Ark Royal became the first carrier to be constructed and launched with an angled deck, rather than having one retrofitted. This was followed in the same year by the lead ships of the British Majestic class (HMAS Melbourne) and the American Forrestal class (USS Forrestal).[17]

Ski-jump

A Royal Navy Sea Harrier taking off from the ski-jump on the deck of HMS Invincible in May 1990.

A ski-jump converts part of the aircraft's forward motion to upward motion through the use of a curved ramp located at the end of the flight deck. As a result, the aircraft starts out its flight with a positive rate-of-climb. This allows heavier aircraft to take off even though the lift generated is smaller. Gravity causes the upward velocity to decline, but the aircraft continues to accelerate after leaving the flight deck. By the time the upward velocity has decayed to zero, the aircraft is going fast enough to attain stable flight.

Ski-jumps can be used to enable conventional aircraft to takeoff on STOBAR aircraft carriers. They can also enable heavier payloads for STOVL aircraft.

Flexible decks

An idea tested, but never put into service, was the flexible or inflated, air-cushioned, "rubber deck". In the early jet age it was recognised that eliminating the landing gear for carrier borne aircraft would improve the flight performance and range, since the space taken by the landing gear could be used to hold additional fuel tanks. This led to the concept of a deck that would absorb the energy of landing.[21]

With the introduction of jet aircraft the risk of damaging propellers was no longer an issue, though take off would require some sort of launching cradle.[22] Tests were carried out with a de Havilland Sea Vampire flown by test pilot Eric "Winkle" Brown onto a flexible deck fitted to HMS Warrior.[23]

The deck consisted of a rubberised sheet fully supported on multiple layers of pressurised fire hose.[24] Supermarine designed its Type 508 for rubber deck landings. The flexible deck idea was found to be technically feasible but was abandoned, as the weight of carrier aircraft increased and there were always doubts about the ability of an average pilot to land in this way. The Type 508 was subsequently developed into a conventional carrier aircraft, the Supermarine Scimitar.

The US Navy evaluated a shore-based flexible deck made by Firestone Tire and Rubber Co. using two modified Grumman F9F-7 Cougars. Three US pilots had participated in the British flexible deck trials at Farnborough and the US Navy, despite liaison with the British, partially redid the Farnborough trials, with 23 landings at Patuxent River, before cancelling the project in March 1956 for similar reasons.[25]

Alternatives

During the Cold War era, multiple unorthodox alternatives to the conventional flight deck were proposed and, in some cases, experimented with.

The Shipborne Containerised Air-defence System (SCADS) was a proposed modular kit to convert a RO-RO or container ship into aviation vessels, with one scheme allowing a container ship to be converted to a STOVL aircraft carrier in two days during an emergency and quick removal after use for storage. A prefabricated flight deck and ski jump would allow six Sea Harriers and two helicopters to be operated, with shipping containers providing hangarage for the aircraft and housing their support systems and personnel as well as defensive systems and missiles.[26] Several variants of the SCADS concept were devised for different missions roles; one implementation was tailored towards helicopter operations for example.[27] It was effectively a modern equivalent to the Second World War-era merchant aircraft carrier.

The Skyhook system was developed by British Aerospace, involving the use of a crane with a top mating mechanism hung over the sea to catch and release VTOL aircraft, such as the Harrier Jump Jet. The system could be installed on ships of various configurations and sizes, even those as small as frigates, enabling virtually any Royal Navy ship to deploy a handful of Harriers. It was intended for the Skyhook to enable not only the launch and recovery of such aircraft, but to enable rapid rearming and refuelling operations to be performed.[28][29] The system was marketed to various foreign customers into the 1990s, such as to enable Japan's fleet of helicopter destroyers to operate Harriers by installing the Skyhook onboard.[30] Perhaps the most elaborate implementation proposed was the application of the Skyhook to large submarines, such as the Russian Typhoon class, to produce a submarine aircraft carrier.[31][32]

The Saunders-Roe SR.A/1 was a prototype jet-propelled flying boat fighter, developed during the 1940s with the intention of eliminating the monopoly held by aircraft carriers on launching jet fighters. Described as being the first water-based aircraft to harness jet propulsion in the world,[33] the SR.A/1 attracted interest from both British and American officials, with data on the project being transferred.[34] However, officials concluded that the concept had been rendered obsolete in comparison to increasingly capable land-based fighters, together with the inability to resolve engine difficulties, compelling a termination of work. During June 1951, the SR.A/1 prototype (TG263) flew for the last time.[35][36].

During the early 1950s, Saunders-Roe worked on a new fighter design, designated Project P.121, that featured skis aircraft publication Flight referred to it as the "Saunders-Roe Hydroski" with the aim of bringing its performance closer to that of land-based aircraft. By adopting hydroskis and dispensing with the hull approach of the SR.A/1, no concessions to hydrodynamic requirements were imposed upon the fuselage.[37][33] On 29 January 1955, the company decided not to proceed with the construction of a prototype, the proposal having not attracted any official support.[38][33]

The Convair F2Y Sea Dart was a supersonic seaplane jet fighter that had skis rather than wheels. In the late 1940s, the United States Navy feared that supersonic aircraft would stall at low speeds required for a carrier arresting gear, and therefore would not be able to land on a conventional aircraft carrier. The Sea Dart would land on (smooth) water; then be lowered and raised from the sea via crane. The Navy also considered combining the Sea Dart with the unorthodox approach of a submarine aircraft carrier that could carry up to three such aircraft inside purpose-built pressure chambers. They would have been raised by a portside elevator aft of the sail and either take off on their own from a smooth sea or be catapult launched from the aft in a higher sea.[39] During the test flight phase, the hydro-skis generated violent vibrations during takeoff and landing, while a fatal crash caused by structural failure also marred the programme; the Navy opted to cancel all production aircraft.[40]

The United States Navy held considerable interest in the submarine aircraft carrier concept during the late 1940s. A study performed in 1946 envisioned very large submarines, ranging from 600 ft (180 m) to 750 ft (230 m) in length, to carry two XA2J Super Savage bombers for the strategic nuclear strike mission, or alternatively four F2H Banshee fighters. Another proposal would have involved the conversion of redundant Second World War-era fleet submarines to enabled to carriage and launch of a seaplane model of the Douglas A-4 Skyhawk attack aircraft, which would have been equipped with hydro-skis for takeoff similar to those of the Sea Dart.[41]

Tasks

US aircraft carriers have these tasks, signalled by jersey colors:

US aircraft carrier: jack colors and tasks[42][43][44]
ColorTask
Yellow
  • Aircraft handling officer
  • Catapult and arresting gear officer
  • Plane director – responsible for all movement of all aircraft on the flight/hangar deck
Green
  • Catapult and arresting gear crew
  • Visual Landing Aid electrician
  • Air wing maintenance personnel
  • Air wing quality control personnel
  • Cargo-handling personnel
  • Ground support equipment (GSE) troubleshooter
  • Hook runner
  • Photographer's mate
  • Helicopter landing signal enlisted personnel (LSE)
Red
  • Ordnance handler
  • Crash and salvage crew
  • Explosive ordnance disposal (EOD)
  • Firefighter and Damage Control Party
Purple
  • Aviation fuel handler
Blue
  • Trainee plane handler
  • Chocks and chains – entry-level flight-deck workers under the yellowshirts
  • Aircraft elevator operator
  • Tractor driver
  • Messengers and phone talker
Brown
  • Air wing plane captain – squadron personnel who prepare aircraft for flight
  • Air wing line leading petty officer
White
  • Quality Assurance (QA)
  • Squadron plane inspector
  • Landing signal officer (LSO)
  • Air transfer officer (ATO)
  • Liquid oxygen (LOX) crew
  • Safety observer
  • Medical personnel (white with Red Cross emblem)
gollark: Carrier-sense multiple access with collision avoidance (CSMA/CA) in computer networking, is a network multiple access method in which carrier sensing is used, but nodes attempt to avoid collisions by beginning transmission only after the channel is sensed to be "idle".[1][2] When they do transmit, nodes transmit their packet data in its entirety.
gollark: Should I be?!
gollark: Denied.
gollark: It has been determined that this is actually a webtorus.
gollark: Yes, it was a link grapher.

See also

References

Citations

  1. NATOPS Instrument Flight Manual NAVAIR 00-80T-112 : "Helicopter Operation Procedures for Air-Capable Ships". Naval Air Systems Command, Department of the Navy. 2006.
  2. "Flight From the Hibernia". The Times (39895). London. 10 May 1912. col 3, p. 8.
  3. Hone, Thomas C.; Friedman, Norman; Mandeles, Mark D. (1999). American and British Aircraft Carrier Development, 1919-1941. Annapolis, Maryland: Naval Institute Press. p. 125. ISBN 9781557503824.
  4. USS Bennington. Action Report, Operations in Support Of The Occupation Of Okinawa Including Strike Against Kanoya Airfield, Kyushu. 28 May to 10 June 1945. p. 18. On June 5, 1945, USS Bennington reported that her maximum hangar capacity was 51 aircraft, 15 SB2Cs and 36 F4Us, and that 52 were carried as a deck park. At that time she carried 15 TBMs, 15 SB2Cs and the rest were a mix of F6Fs and F4Us. She was prompted to utilize, and report on, her maximum hangar storage due to a Typhoon
  5. Eadon, Stuart, ed. (1991). Kamikaze, The Story of the British Pacific Fleet. Worcester. pp. 338–339. ISBN 1-872017-23-1. In nine kamikaze strikes "...The Fleet Air Arm suffered...44 personnel killed...By contrast Bunker Hill lost 387 dead in the Kamikaze attack on 11th of May 1945."
  6. Roberts, John (2000), British Warships of the Second World War, London, UK: Chatham Publications, p. 62, ISBN 9781861761316
  7. Brown, David (1971), Warship Profile No. 11: HMS Illustrious Aircraft Carrier 1939–1956, Operational History, Windsor, Berkshire: Profile Publications, p. 257, 42 F4U Corsairs and 15 Fairey Barracudas
  8. Roberts, John (2000), British Warships of the Second World War, London, UK: Chatham Publications, p. 61, ISBN 9781861761316
  9. Muir, Daniel (2004). "Order of Battle - Carrier Raids on the Home Islands : 24-28 July 1945". navweaps.com. Retrieved 9 November 2015. HMS Implacable: 48 Seafires, 21 Avengers and 12 Fireflies
  10. Roberts, John (1982), The Aircraft Carrier Intrepid, London, UK: Conway Maritime Press, ISBN 9780851772516
  11. Muir, Daniel (2004). "Order of Battle - Carrier Raids on the Home Islands : 24-28 July 1945". navweaps.com. Retrieved 9 November 2015. USS Bennington: 37 Hellcats, 37 Corsairs, 15 Helldivers and 15 Avengers
  12. Francillon, René (1978). US Navy Carrier Airgroups Pacific, 1941-1945. London: Osprey Press. ISBN 9780850452914.
  13. Cracknell, William H. (1972), Warship Profile No. 15: USS Enterprise (CVAN 65) Nuclear Attack Carrier, Windsor, Berkshire: Profile Publications, p. 56
  14. "The Angled Deck Story". denniscambell.org.uk. 2012. Archived from the original on 4 March 2016. Retrieved 9 November 2015.
  15. "History of Fleet Air Arm Officers Association". FAAOA.org. 2015. Retrieved 9 November 2015.
  16. Hone, Thomas C.; Friedman, Norman; Mandeles, Mark D. (2011). "Innovation in Carrier Aviation". Newport Paper 37. Naval War College Press.; abridged findings published as "The Development of the Angled-Deck Aircraft Carrier". Naval War College Review. 64 (2): 63–78. Spring 2011.
  17. "The angled flight deck". Sea Power Centre Australia. Royal Australian Navy. Retrieved 22 January 2013.
  18. Friedman, Norman (1983). U.S. Aircraft Carriers: An Illustrated Design History. Annapolis, Maryland: Naval Institute Press. p. 188. ISBN 978-0-87021-739-5.
  19. "USS Midway CV-41". chinfo.navy.mil. Archived from the original on December 28, 2008.
  20. "Awards" (PDF). Archived from the original (PDF) on 2004-11-02.
  21. GB patent 742240, Arthur Davenport, "Improvements in or relating to apparatus for facilitating landing of aircraft", issued 1955-12-21, assigned to Westland Aircraft Ltd
  22. Burke, Damien (2012). "Supermarine Scimitar - History". Thunder & Lightnings. Retrieved 9 November 2015.
  23. "de Havilland DH.100 Vampire". livingwarbirds.com. Retrieved 9 November 2015.
  24. Farnborough and the Fleet Air Arm. Geoffrey G.J.Cooper 2008, Midland Publishing, ISBN 978 1 85780 306 8
  25. U.S. Naval Air Superiority, Development Of Shoipborne Jet Fighters 1943–1962 Tommy H. Thomason 2007, Specialty Press, ISBN 978-1-58007-110-9, pp. 190–191
  26. Layman & McLaughlin 1991, pp. 210–211
  27. Sambuy, Dí (1990). "SCADS A AND B - TWO VERSIONS FOR THE ASSIGNMENT OF PART OF THE LOAD TO WEAPONS SYSTEMS ON CONTAINERSHIPS". semanticscholar.org.
  28. Goebel, Greg. "The full story of the Harrier 'Jump-Jet' Part Four—the 'Second Generation' Harriers—The BAe/MDD AV-8B Harrier II, GR.5, GR.7, GR.9 & T.10 Harriers". Wingweb.co.uk. Archived from the original on 19 October 2013. Retrieved 10 November 2013.
  29. Layman & McLaughlin 1991, pp. 154–155, 192–193
  30. Jacobs, Gordon. "Reporting from the East, Japan continues to emphasis its sea defense forces". Jane's Defence Weekly, 1990, p. 64.
  31. Treadwell, Terry. "Submarine Aviation", The Putnam Aeronautical Review, 1991. pp. 46–54.
  32. "Skyhooks for Harriers". Popular Mechanics, October 1983, p. 181. Retrieved 31 July 2011.
  33. King, H. F. (25 June 1954). "Military Aircraft 1954". Flight. 65 (2370): 828.
  34. King 14 December 1950, p. 555.
  35. London 2003, pp. 235–237.
  36. "British Aircraft, 1951". Flight. 60 (2224): 288. 7 September 1951. Tests with the Beryl-powered S.R./A.1 continue
  37. Buttler.British Secret Projects : Jet Fighters since 1950, Page 240.
  38. Buttler.British Secret Projects : Jet Fighters since 1950, Page 243.
  39. Friedman, Norman; Christley, Jim (1995). U.S. Submarines Through 1945: An Illustrated Design History. Annapolis, MD: Naval Institute Press. ISBN 978-1-55750-263-6.CS1 maint: ref=harv (link)
  40. Yenne 2009, p. 112.
  41. Friedman, Norman (1994). U.S. Submarines Since 1945: An Illustrated Design History. Annapolis, Maryland: United States Naval Institute. pp. 178–182, 262–263. ISBN 1-55750-260-9.
  42. John Pike (2000-04-06). "Carrier Design". Globalsecurity.org. Retrieved 2015-10-13.
  43. "Rainbow wardrobe". Official Website of the United States Navy. Retrieved 2020-04-26.
  44. Chivers, C.J. (25 January 2012), "Potent Sting Is Prepared in the Belly of a Warship", The New York Times, nyt.com, retrieved 26 January 2012, A version of this article appeared in print on January 26, 2012, on page A6 of the New York edition with the headline: Potent Sting Is Prepared In the Belly Of a Warship.

Bibliography

  • Layman, R. D.; McLaughlin, Stephen (1991). The Hybrid Warship: The Amalgamation of Big Guns and Aircraft. London: Conway Maritime Press. ISBN 0-85177-555-1.

Further reading

  • Truebe, Carl (September 2017). "Question 29/53: RN WWI 'Flying-off' platforms". Ask Infoser. Warship International. LIV (3): 190–192. ISSN 0043-0374. JSTOR 44894908. (subscription required)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.