Differential topology

In mathematics, differential topology is the field dealing with differentiable functions on differentiable manifolds. It is closely related to differential geometry and together they make up the geometric theory of differentiable manifolds.

Description

Differential topology considers the properties and structures that require only a smooth structure on a manifold to be defined. Smooth manifolds are 'softer' than manifolds with extra geometric structures, which can act as obstructions to certain types of equivalences and deformations that exist in differential topology. For instance, volume and Riemannian curvature are invariants that can distinguish different geometric structures on the same smooth manifoldthat is, one can smoothly "flatten out" certain manifolds, but it might require distorting the space and affecting the curvature or volume.

On the other hand, smooth manifolds are more rigid than the topological manifolds. John Milnor discovered that some spheres have more than one smooth structure—see Exotic sphere and Donaldson's theorem. Michel Kervaire exhibited topological manifolds with no smooth structure at all.[1] Some constructions of smooth manifold theory, such as the existence of tangent bundles,[2] can be done in the topological setting with much more work, and others cannot.

One of the main topics in differential topology is the study of special kinds of smooth mappings between manifolds, namely immersions and submersions, and the intersections of submanifolds via transversality. More generally one is interested in properties and invariants of smooth manifolds that are carried over by diffeomorphisms, another special kind of smooth mapping. Morse theory is another branch of differential topology, in which topological information about a manifold is deduced from changes in the rank of the Jacobian of a function.

For a list of differential topology topics, see the following reference: List of differential geometry topics.

Differential topology versus differential geometry

Differential topology and differential geometry are first characterized by their similarity. They both study primarily the properties of differentiable manifolds, sometimes with a variety of structures imposed on them.

One major difference lies in the nature of the problems that each subject tries to address. In one view,[3] differential topology distinguishes itself from differential geometry by studying primarily those problems that are inherently global. Consider the example of a coffee cup and a donut (see this example). From the point of view of differential topology, the donut and the coffee cup are the same (in a sense). This is an inherently global view, though, because there is no way for the differential topologist to tell whether the two objects are the same (in this sense) by looking at just a tiny (local) piece of either of them. They must have access to each entire (global) object.

From the point of view of differential geometry, the coffee cup and the donut are different because it is impossible to rotate the coffee cup in such a way that its configuration matches that of the donut. This is also a global way of thinking about the problem. But an important distinction is that the geometer does not need the entire object to decide this. By looking, for instance, at just a tiny piece of the handle, he can decide that the coffee cup is different from the donut because the handle is thinner (or more curved) than any piece of the donut.

To put it succinctly, differential topology studies structures on manifolds that, in a sense, have no interesting local structure. Differential geometry studies structures on manifolds that do have an interesting local (or sometimes even infinitesimal) structure.

More mathematically, for example, the problem of constructing a diffeomorphism between two manifolds of the same dimension is inherently global since locally two such manifolds are always diffeomorphic. Likewise, the problem of computing a quantity on a manifold that is invariant under differentiable mappings is inherently global, since any local invariant will be trivial in the sense that it is already exhibited in the topology of . Moreover, differential topology does not restrict itself necessarily to the study of diffeomorphism. For example, symplectic topology—a subbranch of differential topology—studies global properties of symplectic manifolds. Differential geometry concerns itself with problems—which may be local or global—that always have some non-trivial local properties. Thus differential geometry may study differentiable manifolds equipped with a connection, a metric (which may be Riemannian, pseudo-Riemannian, or Finsler), a special sort of distribution (such as a CR structure), and so on.

This distinction between differential geometry and differential topology is blurred, however, in questions specifically pertaining to local diffeomorphism invariants such as the tangent space at a point. Differential topology also deals with questions like these, which specifically pertain to the properties of differentiable mappings on (for example the tangent bundle, jet bundles, the Whitney extension theorem, and so forth).

The distinction is concise in abstract terms:

  • Differential topology is the study of the (infinitesimal, local, and global) properties of structures on manifolds that have only trivial local moduli.
  • Differential geometry is such a study of structures on manifolds that have one or more non-trivial local moduli.
gollark: Try feeding it my code!
gollark: https://media.discordapp.net/attachments/426116061415342080/894703858784301126/aea5fb8d9ecd67c206653d35a16da998.jpg?width=632&height=623
gollark: This is probably just something Codexous.
gollark: Who is also on a lot.
gollark: There is *also* not anyone else here asking to learn arbitrary programming things™.

See also

Notes

References

  • Bloch, Ethan D. (1996). A First Course in Geometric Topology and Differential Geometry. Boston: Birkhäuser. ISBN 978-0-8176-3840-5.CS1 maint: ref=harv (link)
  • Hirsch, Morris (1997). Differential Topology. Springer-Verlag. ISBN 978-0-387-90148-0.CS1 maint: ref=harv (link)
  • Lashof, Richard (Dec 1972). "The Tangent Bundle of a Topological Manifold". American Mathematical Monthly. 79 (10): 1090–1096. doi:10.2307/2317423. JSTOR 2317423.CS1 maint: ref=harv (link)
  • Kervaire, Michel A. (Dec 1960). "A manifold which does not admit any differentiable structure". Commentarii Mathematici Helvetici. 34 (1): 257–270. doi:10.1007/BF02565940.CS1 maint: ref=harv (link)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.