Diethyl ether peroxide

Diethyl ether peroxides are a class of organic peroxides that slowly form in diethyl ether upon storage under air, light, or in the presence of metal by autoxidation.[1]

Diethyl ether hydroperoxide
Identifiers
3D model (JSmol)
ChemSpider
Properties
C4H10O3
Molar mass 106.12 g/mol
Density 1.005 g/cm3
Boiling point 62 to 64 °C (144 to 147 °F; 335 to 337 K) at 18.7 hPa (reduced pressure)
Hazards
Main hazards Explosive
NFPA 704 (fire diamond)
Flammability code 4: Will rapidly or completely vaporize at normal atmospheric pressure and temperature, or is readily dispersed in air and will burn readily. Flash point below 23 °C (73 °F). E.g. propaneHealth code 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformReactivity code 4: Readily capable of detonation or explosive decomposition at normal temperatures and pressures. E.g. nitroglycerinSpecial hazards (white): no code
4
2
4
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Y verify (what is YN ?)
Infobox references

Diethyl ether hydroperoxide

Diethyl ether hydroperoxide (CH3-CH2-O-CH(OOH)-CH3) is a colorless liquid of low viscosity with a pleasant smell. Upon heating it weakly deflagrates, resulting in a fog of acetic acid and water. Diethyl ether hydroperoxide decomposes in the presence of sodium hydroxide and Fe2+-containing salts.

Diethyl ether peroxide, also known as ethylidene peroxide, (-CH(CH3)OO-)n is a polymerization product of diethyl ether hydroperoxide. It is a colorless oily liquid that is an extremely brisant and friction sensitive explosive material. Amounts of less than 5 milligrams can damage chemical apparatuses. The dangerous properties of ether peroxides are the reason that diethyl ether and other peroxide forming ethers like tetrahydrofuran (THF) or ethylene glycol dimethyl ether (1,2-dimethoxyethane) are avoided in industrial processes.

Tests

Diethyl ether peroxides can be detected with a potassium iodide (KI) solution in acetic acid or potassium iodide / starch paper. A positive test results in the formation of iodine (I2) that causes a yellow or brown color of the ether phase or a dark bluish spot on the paper strip.[2]

Degradation

Ether peroxides can be destroyed by disproportionation to acetaldehyde with Fe2+ or Mn2+ ions or with triphenylphosphine (PPh3). The resulting aldehyde has to be removed to prevent a rapid back-formation of peroxides.

gollark: What's the difference? Different orde
gollark: Great! ABR Apiomarkov™ coming soon?
gollark: That was cool and good data, I may have to fork it.
gollark: In what way? Why did you losinate the data?
gollark: __END OF SENTENCE

References

  1. A. Rieche, R. Meister (1936). "Modellversuche zur Autoxidation der Äther". Angewandte Chemie (in German). 49 (5): 106.
  2. "Peroxide Forming Solvents". Sigma-Aldrich. Retrieved 2014-07-09.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.