Complement component 9

Complement component 9 (C9) is a MACPF protein involved in the complement system, which is part of the innate immune system.[5] Once activated, about 12-18 molecules of C9 polymerize to form pores in target cell membranes, causing lysis and cell death.[6] C9 is one member of the complement membrane attack complex (MAC), which also includes complement components C5b, C6, C7 and C8.[7][8][9]  The formation of the MAC occurs through three distinct pathways: the classical, alternative, and lectin pathways.[7] Pore formation by C9 is an important way that bacterial cells are killed during an infection, and the target cell is often covered in multiple MACs. The clinical impact of a deficiency in C9 is an infection with the gram-negative bacterium Neisseria meningitidis.[10]

C9
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesC9, ARMD15, C9D, complement component 9, complement C9
External IDsOMIM: 120940 MGI: 1098282 HomoloGene: 74406 GeneCards: C9
Gene location (Human)
Chr.Chromosome 5 (human)[1]
Band5p13.1Start39,284,140 bp[1]
End39,424,868 bp[1]
Orthologs
SpeciesHumanMouse
Entrez

735

12279

Ensembl

ENSG00000113600

ENSMUSG00000022149

UniProt

P02748

P06683

RefSeq (mRNA)

NM_001737

NM_013485
NM_001368420
NM_001368421

RefSeq (protein)

NP_001728

NP_038513
NP_001355349
NP_001355350

Location (UCSC)Chr 5: 39.28 – 39.42 MbChr 15: 6.45 – 6.5 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Structure

C9 genes include 11 exons and 10 introns when found in fish.[11] In fish, the liver is the site where the majority of complement components are produced and expressed, but C9 can also be found in other tissues.[11] It is a single-chain glycoprotein with a four domain structure arranged in a globular bundle.[10][11]

Pore formation

MAC formation starts with the assembly of a tetrameric complex with the complement components C6, C7, C8, and C5b.[12] The final step of MAC on target cell surfaces involves the polymerization of C9 molecules bound to C5b8 forming C5b-9.[8][10][11] C9 molecules allow cylindrical, asymmetrical transmembrane pores to form. The overall complex belongs to MAC/perforin-like (MACPF)/CDC superfamily.[6] Pore formation involves binding the C9 molecules to the target membrane, membrane molecules forming a pre-pore shape, and conformational change in the TMH1, the first transmembrane region, and TMH2, the second transmembrane region.[8] The formations of pores leads to the killing of foreign pathogens and infected host cells.

gollark: Where?
gollark: That doesn't actually address the thing very much.
gollark: Incorrect how? As I see it, those who decide to die and/or not have children will generally reproduce (genetically or memetically) than those who don't.
gollark: That unless you coercively obliterate all humans at once, it won't actually work.
gollark: The most obvious objection is that there's selection pressure against voluntarily extincting yourself.

References

  1. GRCh38: Ensembl release 89: ENSG00000113600 - Ensembl, May 2017
  2. GRCm38: Ensembl release 89: ENSMUSG00000022149 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Lint TF, Zeitz HJ, Gewurz H (November 1980). "Inherited deficiency of the ninth component of complement in man". Journal of Immunology. 125 (5): 2252–7. PMID 7430628.
  6. Dudkina NV, Spicer BA, Reboul CF, Conroy PJ, Lukoyanova N, Elmlund H, et al. (February 2016). "Structure of the poly-C9 component of the complement membrane attack complex". Nature Communications. 7 (1): 10588. Bibcode:2016NatCo...710588D. doi:10.1038/ncomms10588. PMC 4742998. PMID 26841934.
  7. Mohapatra A, Das S, Dey S, Sahoo PK (April 2020). "Molecular characterization and induced expression analysis of the terminal complement component C9 in rohu, Labeo rohita". Aquaculture Research. 51 (4): 1415–1427. doi:10.1111/are.14487. ISSN 1355-557X.
  8. Spicer BA, Law RH, Caradoc-Davies TT, Ekkel SM, Bayly-Jones C, Pang SS, et al. (August 2018). "The first transmembrane region of complement component-9 acts as a brake on its self-assembly". Nature Communications. 9 (1): 3266. Bibcode:2018NatCo...9.3266S. doi:10.1038/s41467-018-05717-0. PMC 6093860. PMID 30111885.
  9. Wickramaarachchi WD, Wan Q, Lee Y, Lim BS, De Zoysa M, Oh MJ, et al. (October 2012). "Genomic characterization and expression analysis of complement component 9 in rock bream (Oplegnathus fasciatus)". Fish & Shellfish Immunology. 33 (4): 707–17. doi:10.1016/j.fsi.2012.06.019. PMID 22796422.
  10. Fu X, Ju J, Lin Z, Xiao W, Li X, Zhuang B, et al. (July 2016). "Target deletion of complement component 9 attenuates antibody-mediated hemolysis and lipopolysaccharide (LPS)-induced acute shock in mice". Scientific Reports. 6 (1): 30239. Bibcode:2016NatSR...630239F. doi:10.1038/srep30239. PMC 4957234. PMID 27444648.
  11. Li L, Chang MX, Nie P (August 2007). "Molecular cloning, promoter analysis and induced expression of the complement component C9 gene in the grass carp Ctenopharyngodon idella". Veterinary Immunology and Immunopathology. 118 (3–4): 270–82. doi:10.1016/j.vetimm.2007.05.005. PMID 17604124.
  12. Fu YW, Zhu CK, Zhang QZ (May 2019). "Molecular characterization and expression analysis of complement components C3 and C9 in largemouth bronze gudgeon (Coreius guichenoti) in response to Ichthyophthirius multifiliis infection". Aquaculture. 506: 270–279. doi:10.1016/j.aquaculture.2019.03.046.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.