Cognitive ergonomics

Cognitive ergonomics is a scientific discipline that studies, evaluates, and designs tasks, jobs, products, environments and systems and how they interact with humans and their cognitive abilities. It is defined by the International Ergonomics Association as "concerned with mental processes, such as perception, memory, reasoning, and motor response, as they affect interactions among humans and other elements of a system. The relevant topics include mental workload, decision-making, skilled performance, human-computer interaction, human reliability, work stress and training as these may relate to human-system design."[1] Cognitive ergonomics studies cognition in work and operational settings, in order to optimize human well-being and system performance. It is a subset of the larger field of human factors and ergonomics.

Goals

Cognitive ergonomics (sometimes known as cognitive engineering though this was an earlier field) is an emerging branch of ergonomics which places particular emphasis on the analysis of cognitive processes required of operators in modern industries and similar milieus. Examples include diagnosis, workload, situation awareness, decision making, and planning. Cognitive ergonomics aims at enhancing performance of cognitive tasks by means of several interventions, including these:

  • user-centered design of human-machine interaction and human-computer interaction (HCI);
  • design of information technology systems that support cognitive tasks (e.g., cognitive artifacts);
  • development of training programs;
  • work redesign to manage cognitive workload and increase human reliability.

History

The field of cognitive ergonomics emerged predominantly in the 70's with the advent of the personal computer and new developments in the fields of cognitive psychology and artificial intelligence. CE contrasts the tradition of physical ergonomics because "cognitive ergonomics is...the application of psychology to work...to achieve the optimization between people and their work."[2] Viewed as an applied science, the methods involved with creating cognitive ergonomic design have changed with the rapid development in technological advances over the last 27 years. In the 80's, there was a worldwide transition in the methodological approach to design. According to van der Veer, Enid Mumford was one of the pioneers of interactive systems engineering, and advocated the notion of user-centered design, wherein the user is considered and "included in all phases of the design".[3]

There are several different models which describe the criteria for designing user-friendly technology. A number of models focus on a systematic process for design, using task analysis to evaluate the cognitive processes involved with a given task and develop adequate interface capabilities. Task analysis in past research has focused on the evaluation of cognitive task demands, concerning motor control and cognition during visual tasks such as operating machinery, or the evaluation of attention and focus via the analysis of eye saccades of pilots when flying.[3] Neuroergonomics, a subfield of cognitive ergonomics, aims to enhance human-computer interaction by using neural correlates to better understand situational task demands. Neuroergonomic research at the university of Iowa has been involved with assessing safe-driving protocol, enhancing elderly mobility, and analyzing cognitive abilities involved with the navigation of abstract virtual environments."[4]

Methods

Successful, ergonomic intervention in the area of cognitive tasks requires a thorough understanding not only of the demands of the work situation, but also of user strategies in performing cognitive tasks and of limitations in human cognition. In some cases, the artifacts or tools used to carry out a task may impose their own constraints and limitations (e.g., navigating through a large number of GUI screens). Tools may also co-determine the very nature of the task.[3] In this sense, the analysis of cognitive tasks should examine both the interaction of users with their work setting and the user interaction with artifacts or tools; the latter is very important as modern artifacts (e.g., control panels, software, expert systems) become increasingly sophisticated. Emphasis lies on how to design human-machine interfaces and cognitive artifacts so that human performance is sustained in work environments where information may be unreliable, events may be difficult to predict, multiple simultaneous goals may be in conflict, and performance may be time constrained.[5]

User interface modeling

Cognitive task analysis

Cognitive task analysis is a general term for the set of methods used to identify the mental demands and cognitive skills needed to complete a task.[6] Frameworks like GOMS provide a formal set of methods for identifying the mental activities required by a task and an artifact, such as a desktop computer system. By identifying the sequence of mental activities of a user engaged in a task, cognitive ergonomics engineers can identify bottlenecks and critical paths that may present opportunities for improvement or risks (such as human error) that merit changes in training or system behavior.[7]

Applications

As a design philosophy, cognitive ergonomics can be applied to any area where humans interact with technology. Applications include aviation (e.g., cockpit layouts),[8] transportation (e.g., collision avoidance), the health care system (e.g., drug bottle labelling), mobile devices, appliance interface design, product design, and nuclear power plants.

gollark: Yes. All my COOL kernel will do is some sort of inter-process isolation and local sockets.
gollark: Also, who has a VFS in their kernel? This post made by microkernel gang.
gollark: I got bored and am now slowly downloading all the textfiles.com archives and converting them to mildly more compressed zstandard archives. Or, well, watching a python script do taht.
gollark: Idea: what if inodes, but they're arbitrarily long strings and also just the path?
gollark: I don't sanitize it everywhere, but it also doesn't have perms so it's fine.

See also

References

  1. What is Ergonomics? International Ergonomics Association
  2. "Cognitive ergonomics - past, present, future: 10 lessons learned (10 lessons remaining) Proceedings of the Human Factors and Ergonomics Society ... Annual Meeting". human factors and ergonomics society. June 6, 2010. Retrieved November 26, 2011.
  3. van der veer GC (2008). "Cognitive Ergonomics in Interface Design – Discussion of a Moving Science". Journal of Universal Computer Science. 14 (16): 2614–2629.
  4. Division of Neuroergonomics Archived 2011-04-26 at the Wayback Machine University of Iowa Division of Neuroscience
  5. Lee JD (2001). "Emerging challenges in cognitive ergonomics: managing swarms of self-organizing agent-based automation". Theoretical Issues in Ergonomics Science. 2 (3): 238–250. doi:10.1080/14639220110104925. S2CID 17588386.
  6. Hutton RJB, Militello LG (1998). "applied cognitive task analysis (ACTA): a practitioner's toolkit for understanding cognitive task demands". Ergonomics. 41 (11): 1618–1641. CiteSeerX 10.1.1.411.4813. doi:10.1080/001401398186108. PMID 9819578.
  7. Wilson, K. M., Helton, W. S., & Wiggins, M. W. (2013). Cognitive engineering. Wiley Interdisciplinary Reviews: Cognitive Science, 4(1), 17-31.doi:10.1002/wcs.1204
  8. Baxter, Gordon; Besnard, Denis; Riley, Dominic (July 2007). "Cognitive mismatches in the cockpit: Will they ever be a thing of the past?". Applied Ergonomics. 38 (4): 417–423. CiteSeerX 10.1.1.739.6207. doi:10.1016/j.apergo.2007.01.005. PMID 17448437.

Organizations

Publications

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.