Chlorodiphenylphosphine

Chlorodiphenylphosphine is an organophosphorus compound with the formula (C6H5)2PCl, abbreviated Ph2PCl. It is a colourless oily liquid with a pungent odor that is often described as being garlic-like and detectable even in the ppb range. It is useful reagent for introducing the Ph2P group into molecules, which includes many ligands.[1] Like other halophosphines, Ph2PCl is reactive with many nucleophiles such as water and easily oxidized even by air.

Chlorodiphenylphosphine
Names
Preferred IUPAC name
Diphenylphosphinous chloride
Other names
chlorodiphenylphosphine
p-chlorodiphenylphosphine
diphenyl phosphine chloride
diphenylchlorophosphine
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.012.813
EC Number
  • 214-093-2
UNII
Properties
C12H10ClP
Molar mass 220.63776 g mol−1
Appearance clear to light yellow liquid
Density 1.229 g cm−3
Boiling point 320 ˚C
Reacts
Solubility Reacts with alcohols
highly soluble in benzene, THF, and ethers
Hazards
GHS pictograms
GHS Signal word Danger
GHS hazard statements
H290, H302, H314, H318, H412
P234, P260, P264, P270, P273, P280, P301+312, P301+330+331, P303+361+353, P304+340, P305+351+338, P310, P321, P330, P363, P390, P404, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YN ?)
Infobox references

Synthesis and reactions

Chlorodiphenylphosphine is produced on a commercial scale from benzene and phosphorus trichloride (PCl3). Benzene reacts with phosphorus trichloride at extreme temperatures around 600 °C to give dichlorophenylphosphine (PhPCl2) and HCl. Redistribution of PhPCl2 in the gas phase at high temperatures results in chlorodiphenylphosphine.[1][2]

2 PhPCl2 → Ph2PCl + PCl3

Alternatively such compounds are prepared by redistribution reactions starting with triphenylphosphine and phosphorus trichloride.

PCl3 + 2 PPh3 → 2 Ph2PCl

Chlorodiphenylphosphine hydrolyzes to give diphenylphosphine oxide. Reduction with sodium affords tetraphenyldiphosphine:

2 Ph2PCl + 2 Na → [Ph2P]2 + 2 NaCl

Uses

Chlorodiphenylphosphine, along with other chlorophosphines, is used in the synthesis of various phosphines. A typical route uses Grignard reagents:[2]

Ph2PCl + MgRX → Ph2PR + MgClX

The phosphines produced from reactions with Ph2PCl are further developed and used as pesticides (such as EPN), stabilizers for plastics (Sandostab P-EPQ), various halogen compound catalysts, flame retardants (cyclic phosphinocarboxylic anhydride), as well as UV-hardening paint systems (used in dental materials) making Ph2PCl an important intermediate in the industrial world.[1][2]

Precursor to diphenylphosphido derivatives

Chlorodiphenylphosphine is used in the synthesis of sodium diphenylphosphide via its reaction with sodium metal in refluxing dioxane.[3]

Ph2PCl + 2 Na → Ph2PNa + NaCl

Diphenylphosphine can be synthesized in the reaction of Ph2PCl and LiAlH4, the latter usually used in excess.[4]

4 Ph2PCl + LiAlH4 → 4 Ph2PH + LiCl + AlCl3

Both Ph2PNa and Ph2PH are also used in the synthesis of organophosphine ligands.

Characterization

The quality of chlorodiphenylphosphine is often checked by 31P NMR spectroscopy.[5]

Compound31P chemical shift

(ppm vs 85% H3PO4)

PPh3-6
PPh2Cl81.5
PPhCl2165
PCl3218
gollark: I am FULLY on board with any plan to destroy the moon; it's one of the worst celestial bodies.
gollark: Your internet connection is probably faster.
gollark: Interesting question. You should download their entire revision history dump and analyze it.
gollark: Also, apparently if you could transmit information faster than light that would break causality, which would be bad.
gollark: According to xkcd, keeping updated would only require 5 printers worth of throughput, which is not very much in terms of bitrate.

References

  1. Quin, L. D. A Guide to Organophosphorus Chemistry; Wiley IEEE: New York, 2000; pp 44-69. ISBN 0-471-31824-8
  2. Svara, J.; Weferling, N.; Hofmann, T. "Phosphorus Compounds, Organic," In 'Ullmann's Encyclopedia of Industrial Chemistry, 7th ed.; Wiley-VCH: 2008; doi:10.1002/14356007.a19_545.pub2; Accessed: February 18, 2008.
  3. Roy, Jackson W; Thomson, RJ; MacKay.m.f, . (1985). "The Stereochemistry of Organometallic Compounds. XXV. The Stereochemistry of Displacements of Secondary Methanesulfonate and p-Toluene-sulfonate esters by Diphenylphosphide Ions. X-ray Crystal Structure of (5α-Cholestan-3α-yl)diphenylphosphine Oxide". Australian Journal of Chemistry. 38 (1): 111–18. doi:10.1071/CH9850111.CS1 maint: numeric names: authors list (link)
  4. Stepanova, Valeria A.; Dunina, Valery V.; Smoliakova, Irina P. (2009). "Reactions of Cyclopalladated Complexes with Lithium Diphenylphosphide". Organometallics. 28 (22): 6546–6558. doi:10.1021/om9005615.
  5. O. Kühl "Phosphorus-31 NMR Spectroscopy" Springer, Berlin, 2008. ISBN 978-3-540-79118-8
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.