Chamfered dodecahedron

The chamfered dodecahedron is a convex polyhedron with 80 vertices, 120 edges, and 42 faces: 30 hexagons and 12 pentagons. It is constructed as a chamfer (geometry) (edge-truncation) of a regular dodecahedron. The pentagons are reduced in size and new hexagonal faces are added in place of all the original edges. Its dual is the pentakis icosidodecahedron.

Chamfered dodecahedron
Conway notationcD = t5daD = dk5aD
Goldberg polyhedronGV(2,0) = {5+,3}2,0
FullereneC80[1]
Faces12 pentagons
30 hexagons
Edges120 (2 types)
Vertices80 (2 types)
Vertex configuration(60) 5.6.6
(20) 6.6.6
Symmetry groupIcosahedral (Ih)
Dual polyhedronPentakis icosidodecahedron
Propertiesconvex, equilateral-faced

net

It is also called a truncated rhombic triacontahedron, constructed as a truncation of the rhombic triacontahedron. It can more accurately be called an order-5 truncated rhombic triacontahedron because only the order-5 vertices are truncated.

Structure

These 12 order-5 vertices can be truncated such that all edges are equal length. The original 30 rhombic faces become non-regular hexagons, and the truncated vertices become regular pentagons.

The hexagon faces can be equilateral but not regular with D2 symmetry. The angles at the two vertices with vertex configuration 6.6.6 are arccos(-1/sqrt(5)) = 116.565°, and at the remaining four vertices with 5.6.6, they are 121.717° each.

It is the Goldberg polyhedron GV(2,0), containing pentagonal and hexagonal faces.

It also represents the exterior envelope of a cell-centered orthogonal projection of the 120-cell, one of six (convex regular 4-polytopes).

Chemistry

This is the shape of the fullerene C80 ; sometimes this shape is denoted C80(Ih) to describe its icosahedral symmetry and distinguish it from other less-symmetric 80-vertex fullerenes. It is one of only four fullerenes found by Deza, Deza & Grishukhin (1998) to have a skeleton that can be isometrically embeddable into an L1 space.

This polyhedron looks very similar to the uniform truncated icosahedron which has 12 pentagons, but only 20 hexagons.

The chamfered dodecahedron creates more polyhedra by basic Conway polyhedron notation. The zip chamfered dodecahedron makes a chamfered truncated icosahedron, and Goldberg (2,2).

Chamfered dodecahedron polyhedra
"seed"ambotruncatezipexpandbevelsnubchamferwhirl

cD = G(2,0)
cD

acD
acD

tcD
tcD

zcD = G(2,2)
zcD

ecD
ecD

bcD
bcD

scD
scD

ccD = G(4,0)
ccD

wcD = G(4,2)
wcD
dualjoinneedlekisorthomedialgyrodual chamferdual whirl

dcD
dcD

jcD
jcD

ncD
ncD

kcD
kcD

ocD
ocD

mcD
mcD

gcD
gcD

dccD
dccD

dwcD
dwcD

Chamfered truncated icosahedron

Chamfered truncated icosahedron
Goldberg polyhedronGV(2,2) = {5+,3}2,2
Conway notationctI
FullereneC240
Faces12 pentagons
110 hexagons (3 types)
Edges360
Vertices240
SymmetryIh, [5,3], (*532)
Dual polyhedronHexapentakis chamfered dodecahedron
Propertiesconvex

In geometry, the chamfered truncated icosahedron is a convex polyhedron with 240 vertices, 360 edges, and 122 faces, 110 hexagons and 12 pentagons.

It is constructed by a chamfer operation to the truncated icosahedron, adding new hexagons in place of original edges. It can also be constructed as a zip (= dk = dual of kis of) operation from the chamfered dodecahedron. In other words, raising pentagonal and hexagonal pyramids on a chamfered dodecahedron (kis operation) will yield the (2,2) geodesic polyhedron. Taking the dual of that yields the (2,2) Goldberg polyhedron, which is the chamfered truncated icosahedron, and is also Fullerene C240.

Dual

Its dual, the hexapentakis chamfered dodecahedron has 240 triangle faces (grouped as 60 (blue), 60 (red) around 12 5-fold symmetry vertices and 120 around 20 6-fold symmetry vertices), 360 edges, and 122 vertices.


Hexapentakis chamfered dodecahedron

gollark: mafs
gollark: 1 + 1 → murder is bad
gollark: Like Christians.
gollark: No, you can *arbitrarily pick* some system and SAY it's objectively right.
gollark: "Objective" morality is ridiculous, how would some moral system be *objectively correct*?

References

  1. "C80 Isomers". Archived from the original on 2014-08-12. Retrieved 2014-08-05.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.