2017 Keio Challenger – Men's Doubles
Sanchai and Sonchat Ratiwatana were the defending champions but only Sanchai Ratiwatana chose to defend his title, partnering Peng Hsien-yin. Ratiwatana lost in the first round to Masahiro Fukuda and Masamichi Imamura.
Men's Doubles | |
---|---|
2017 Keio Challenger | |
Champions | |
Runners-up | |
Final score | 4–6, 6–3, [10–4] |
Marin and Tomislav Draganja won the title after defeating Joris De Loore and Luke Saville 4–6, 6–3, [10–4] in the final.
Seeds
Gong Maoxin / Zhang Ze (Semifinals) Peng Hsien-yin / Sanchai Ratiwatana (First round) Alex Bolt / Andrew Whittington (Quarterfinals) Wu Di / Yi Chu-huan (First round)
Draw
Key
- Q = Qualifier
- WC = Wild Card
- LL = Lucky Loser
- Alt = Alternate
- SE = Special Exempt
- PR = Protected Ranking
- ITF = ITF entry
- JE = Junior Exempt
- w/o = Walkover
- r = Retired
- d = Defaulted
First Round | Quarterfinals | Semifinals | Final | ||||||||||||||||||||||||
1 | 6 | 6 | |||||||||||||||||||||||||
WC | 1 | 3 | 1 | 7 | 6 | ||||||||||||||||||||||
65 | 6 | [7] | 5 | 2 | |||||||||||||||||||||||
77 | 4 | [10] | 1 | 3 | 64 | ||||||||||||||||||||||
4 | 6 | 4 | [9] | 6 | 77 | ||||||||||||||||||||||
4 | 6 | [11] | 77 | 7 | |||||||||||||||||||||||
62 | 6 | [7] | WC | 62 | 5 | ||||||||||||||||||||||
WC | 77 | 3 | [10] | 4 | 6 | [10] | |||||||||||||||||||||
Q | 4 | 2 | 6 | 3 | [4] | ||||||||||||||||||||||
6 | 6 | 77 | 6 | ||||||||||||||||||||||||
3 | 3 | 3 | 65 | 3 | |||||||||||||||||||||||
3 | 6 | 6 | 6 | 6 | |||||||||||||||||||||||
3 | 1 | 4 | 2 | ||||||||||||||||||||||||
6 | 6 | 6 | 6 | ||||||||||||||||||||||||
WC | 2 | 710 | [10] | WC | 2 | 1 | |||||||||||||||||||||
2 | 6 | 68 | [5] |
gollark: That does seem... relevant, but also complex to implement and probably overkill for just detecting line vs parabola.
gollark: You can *approximate* just checking if it's going in a straight line...
gollark: Actually, if you want to detect just whether it's going straight up or down as opposed to other directions that's easier.
gollark: So what you want is to figure out if three points are (roughly) on a line?
gollark: What do you mean "type of parabola"? <@318817623590830080>
References
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.