110 Lydia
Lydia (minor planet designation: 110 Lydia) is a large belt asteroid with an M-type spectrum,[5] and thus may be metallic in composition, consisting primarily of nickel-iron. It was discovered by French astronomer Alphonse Borrelly on 19 April 1870[6] and was named for Lydia, the Asia Minor country populated by Phrygians.[7] The Lydia family of asteroids is named after it.
Lightcurve-based 3D-model of Lydia | |
Discovery | |
---|---|
Discovered by | Alphonse Borrelly |
Discovery date | 19 April 1870 |
Designations | |
(110) Lydia | |
Pronunciation | /ˈlɪdiə/[1] |
Named after | Lydia |
| |
Orbital characteristics[2] | |
Epoch 31 July 2016 (JD 2457600.5) | |
Uncertainty parameter 0 | |
Observation arc | 145.80 yr (53,255 d) |
Aphelion | 2.9539 AU (441.90 Gm) |
Perihelion | 2.51115 AU (375.663 Gm) |
2.7325 AU (408.78 Gm) | |
Eccentricity | 0.081021 |
4.52 yr (1649.9 d) | |
Average orbital speed | 17.99 km/s |
348.344° | |
0° 13m 5.52s / day | |
Inclination | 5.9645° |
56.871° | |
283.499° | |
TJupiter | 3.341 |
Physical characteristics | |
Dimensions | |
Mass | 6.7×1017 kg |
Equatorial surface gravity | 0.0241 m/s2 |
Equatorial escape velocity | 0.0455 km/s |
Temperature | ~168 K |
7.80[2][3] | |
Observations made during 1958–1959 at the McDonald Observatory and in 1969 at the Kitt Peak National Observatory found an uneven light curve with a period of 10.9267 hours.[8] In the late 1990s, a network of astronomers worldwide used light curves to derive spin states and shape models of 10 new asteroids, including (110) Lydia. They obtained a period of 10.92580 hours, with the brightness varying by no more than 0.2 in magnitude.[4]
In the Tholen classification system, it is categorized as an M-type asteroid, while the Bus asteroid taxonomy system lists it as an Xk asteroid.[9] Absorption features in the near infrared are attributed to low-iron, low-calcium orthopyroxene minerals. Water content on the surface is estimated at 0.14–0.27 by mass fraction (wt%).[10] Measurements of the thermal inertia of 110 Lydia give a value between 70 and 200 J·m−2·K−1·s−1/2, compared to 50 for lunar regolith and 400 for coarse sand in an atmosphere.[3] It is a likely interloper in the Padua family of minor planets that share similar dynamic properties.[11]
References
- Noah Webster (1884) A Practical Dictionary of the English Language
- Yeomans, Donald K., "110 Lydia", JPL Small-Body Database Browser, NASA Jet Propulsion Laboratory, retrieved 12 May 2016.
- Delbo', Marco; Tanga, Paolo (February 2009), "Thermal inertia of main belt asteroids smaller than 100 km from IRAS data", Planetary and Space Science, 57 (2), pp. 259–265, arXiv:0808.0869, Bibcode:2009P&SS...57..259D, doi:10.1016/j.pss.2008.06.015.
- Durech, J.; et al. (April 2007), "Physical models of ten asteroids from an observers' collaboration network", Astronomy and Astrophysics, 465 (1), pp. 331–337, Bibcode:2007A&A...465..331D, doi:10.1051/0004-6361:20066347.
- DeMeo, Francesca E.; et al. (2011), "An extension of the Bus asteroid taxonomy into the near-infrared" (PDF), Icarus, 202 (1): 160–180, Bibcode:2009Icar..202..160D, doi:10.1016/j.icarus.2009.02.005, archived from the original (PDF) on 17 March 2014, retrieved 11 December 2013. See appendix A.
- "Numbered Minor Planets 1–5000", Discovery Circumstances, IAU Minor Planet center, retrieved 7 April 2013.
- Schmadel, Lutz D. (2003), Dictionary of Minor Planet Names (5th ed.), Springer, p. 23, ISBN 3-540-00238-3.
- Taylor, R. C.; et al. (March 1971), "Minor Planets and Related Objects. VI. Asteroid (110) Lydia", Astronomical Journal, 76, p. 141, Bibcode:1971AJ.....76..141T, doi:10.1086/111097.
- DeMeo, Francesca E.; et al. (July 2009), "An extension of the Bus asteroid taxonomy into the near-infrared" (PDF), Icarus, 202 (1), pp. 160–180, Bibcode:2009Icar..202..160D, doi:10.1016/j.icarus.2009.02.005, archived from the original (PDF) on 17 March 2014, retrieved 8 April 2013. See appendix A.
- Hardersen, Paul S.; Gaffey, Michael J.; Abell, Paul A. (January 1983), "Near-IR spectral evidence for the presence of iron-poor orthopyroxenes on the surfaces of six M-type asteroids", Icarus, 175 (1), pp. 141–158, Bibcode:2005Icar..175..141H, doi:10.1016/j.icarus.2004.10.017.
- Carruba, V. (May 2009), "The (not so) peculiar case of the Padua family", Monthly Notices of the Royal Astronomical Society, 395 (1): 358–377, Bibcode:2009MNRAS.395..358C, doi:10.1111/j.1365-2966.2009.14523.x.
External links
- Lightcurve plot of 110 Lydia, Palmer Divide Observatory, B. D. Warner (2012)
- Asteroid Lightcurve Database (LCDB), query form (info)
- Dictionary of Minor Planet Names, Google books
- Asteroids and comets rotation curves, CdR – Observatoire de Genève, Raoul Behrend
- Discovery Circumstances: Numbered Minor Planets (1)–(5000) – Minor Planet Center
- 110 Lydia at AstDyS-2, Asteroids—Dynamic Site
- 110 Lydia at the JPL Small-Body Database