∞-groupoid

In category theory, a branch of mathematics, an ∞-groupoid is an abstract homotopical model for topological spaces. One model uses Kan complexes which are fibrant objects in the category of simplicial sets (with the standard model structure).[1] It is an ∞-category generalization of a groupoid, a category in which every morphism is an isomorphism.

The homotopy hypothesis states that ∞-groupoids are spaces.

Globular Groupoids

Alexander Grothendieck suggested in Pursuing Stacks that there should be an extraordinarily simple model of ∞-groupoids using globular sets. These sets are constructed as presheaves on the globular category . This is defined as the category whose objects are finite ordinals and morphisms are given by

such that the globular relations hold

These encode the fact that -morphisms should not be able to see -morphisms. We can also consider globular objects in a category as functors

There was hope originally that such a strict model would be sufficient for homotopy theory, but there is evidence suggesting otherwise.

gollark: Even if it wasn't inevitable it would inevitably become inevitable.
gollark: We have many excellent bots. It really livens up voice chat.
gollark: They're high quality and plentiful!
gollark: Over 500 now.
gollark: Truly, none are safe.

See also

References

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.