Period multiplier

Period multiplier is a term commonly used for a pulse divider, because dividing the number of signals in a regular stream by N necessarily multiplies the period by N. The term "period multiplier" can be somewhat misleading in this context, because most such circuits can accept input streams that are not strictly periodic.

For Herschel signals and glider guns, a number of small period doubler, tripler, and quadrupler mechanisms are known. For example, the first one of the following conduits produces one output glider after accepting four input B-heptominoes, or four Herschels if a conduit such as F117 is prepended that includes the same BFx59H converter. For a period-doubling variant of that conduit, see L156.

<html><div class="rle"><div class="codebox"><div style="display:none;"><code></html> #C Period multiplier example based on NW31 x = 44, y = 29, rule = B3/S23 19bo$19b3o$22bo$11b2o8b2o$12bo$12bobo$b2o10b2o$2bo$bo$b2o3$42b2o$42b2o 2$o3b2o$2o2b2o$b2o$2o9$32b2o$32b2o! #C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]] #C [[ THUMBSIZE 2 WIDTH 640 HEIGHT 640 ]]<html></code></div></div><canvas width="200" height="300" style="margin-left:1px;"><noscript></html>
Please enable Javascript to view this LifeViewer.
<html></noscript></canvas></div></html>
An NW31 4× period multiplier.
(click above to open LifeViewer)
RLE: here Plaintext: here
<html><div class="rle"><div class="codebox"><div style="display:none;"><code></html>x = 43, y = 49, rule = B3/S23 34b2o$34bo$32b3o16$32b2o$23b2o7b2o$24bo$24bobo$19b2o4b2o$b2o17bo20b2o$ 2bo17bobo18bo$bo19b2o16bobo$b2o36b2o6$o3b2o$2o2b2o$b2o$2o2$35b2o$35bo$ 36b3o$38bo5$21b2o$22bo$21bo$21b2o! #C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]] #C [[ THUMBSIZE 2 WIDTH 640 HEIGHT 640 ]]<html></code></div></div><canvas width="200" height="300" style="margin-left:1px;"><noscript></html>
Please enable Javascript to view this LifeViewer.
<html></noscript></canvas></div></html>
An L112 4× period multiplier.
(click above to open LifeViewer)
RLE: here Plaintext: here
<html><div class="rle"><div class="codebox"><div style="display:none;"><code></html>x = 60, y = 35, rule = B3/S23 52bo$50b3o$49bo$49b2o$37bo$37b3o$40bo$39b2o$8bo$7bobo$8bo44b2o$53b2o$ 6b5o$5bo4bo$4bo2bo$bo2bob2o13b2o$obobo5bo10b2o$bo2bo4bobo$4b2o2bo2bo$ 9b2o$58b2o$28bob2o26b2o$26b3ob2o$26bo$26bo$9bo$9bobo$9b3o43b2o$11bo43b o$56bo$55b2o3$21b2o$21b2o! #C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]] #C [[ THUMBSIZE 2 WIDTH 640 HEIGHT 640 ]]<html></code></div></div><canvas width="200" height="300" style="margin-left:1px;"><noscript></html>
Please enable Javascript to view this LifeViewer.
<html></noscript></canvas></div></html>
An Fx70 4× period multiplier.
(click above to open LifeViewer)
RLE: here Plaintext: here

Additional examples for glider streams are semi-Snark, tremi-Snark and quadri-Snark. As of June 2020 no stable period-multiplying elementary conduits are known for a multiplication factor of five or higher, though it is easy to construct composite ones.

Reactions have also been found to double or triple the output period of some rakes in a relatively small space, enabling an exponential increase in period for a linear increase in size.[citation needed]

This article is issued from Conwaylife. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.