L112

L112 is a composite conduit, one of the original sixteen Herschel conduits, discovered by Dave Buckingham in July 1996. It is made up of two elementary conduits, HLx53B and BFx59H. After 112 ticks, it produces a Herschel turned 90 degrees counterclockwise at (12, -33) relative to the input. Its recovery time is 58 ticks; This is the limit of repeat time for any conduit that contains the BFx59H.

L112
<html><div class="rle"><div class="codebox"><div style="display:none;"><code></html>x = 24, y = 42, rule = B3/S23 15b2o$15bo$13b3o16$13b2o$4b2o7b2o$5bo$5bobo$2o4b2o$bo20b2o$bobo18bo$2b 2o16bobo$20b2o6$2bo$2bobo$2b3o$4bo2$14b2o$14b2o2b2o$18bobo$20bo$20b2o! #C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]] #C [[ AUTOSTART ]] <nowiki>#C [[ ZOOM 10 X 0 Y 0 GPS 20 LOOP 113 PAUSE 2 T 112 PAUSE 2 WIDTH 480 HEIGHT 480 THUMBSIZE 2 ]]</nowiki> <html></code></div></div><canvas width="200" height="300" style="margin-left:1px;"><noscript></html> File:L112.png <html></noscript></canvas></div></html>
Pattern type Conduit
Conduit type Composite
Input Herschel
Number of cells 42
Output orientation Turned left
Output offset (-12, -33)
Step 112 ticks
Recovery time
(ignoring FNG if any)
58 ticks
Minimum overclock period
(ignoring FNG if any)
Unknown
Spartan? Yes
Dependent? No
Discovered by David Buckingham
Year of discovery 1996

In the pattern shown in the infobox, a ghost Herschel marks the output location.

By removing the eater 1/block constellation on the bottom right, L112 can dependently reflect gliders by 90° and 180° (leaving a block that the next Herschel's spark in the loop can delete), as used in the large quetzal guns. It can also dependently act as a G-to-H when a loaf (or boat), block and snake/eater 1 is added.

<html><div class="rle"><div class="codebox"><div style="display:none;"><code></html>x = 50, y = 108, rule = B3/S23 15b2o$6b2o7b2o$7bo$7bobo$2b2o4b2o$3bo20b2o$3bobo18bo$4b2o16bobo$22b2o 6$4bo$4bobo$4b3o$6bo2$11b2o$11b2o10$24bo$23b2o$23bobo5$15b2o$6b2o7b2o$ 7bo32bo$7bobo31bo$2b2o4b2o29b2o$3bo20b2o$3bobo18bo$4b2o16bobo$22b2o6$ 4bo$4bobo$4b3o$6bo13$b2o$obo$2bo5$15b2o$6b2o7b2o$7bo32bo$7bobo31bo$2b 2o4b2o29b2o$3bo20b2o$3bobo18bo$4b2o16bobo$22b2o6$4bo$4bobo$4b3o$6bo4$ 49bo$47b3o$30b2o15bo$30b2o15bo2$11bo$10bobo$9bo2bo$bo8b2o$b2o24b2o$obo 24bo$28bo$27b2o! #C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]] #C [[ AUTOSTART THUMBSIZE 2 ZOOM 8 HEIGHT 1000 GPS 20 PAUSE 2 T 45 PAUSE 2 T 53 PAUSE 2 T 54 PAUSE 2 T 82 PAUSE 2 T 112 PAUSE 2 T 141 PAUSE 2 LOOP 142 ]]<html></code></div></div><canvas width="200" height="300" style="margin-left:1px;"><noscript></html>
Please enable Javascript to view this LifeViewer.
<html></noscript></canvas></div></html>
(click above to open LifeViewer)
RLE: here Plaintext: here
  • 1. Glider reflects by 180°
  • 2. Glider reflects by 90°
  • 3. Glider is converted into Herschel with the addition of a loaf, block and eater 1 (RF28B + BFx59H)

In the LifeViewer above, the second example's Herschel collides with the block, but in an actual loop, it is the first example's "next" Herschel in the loop that will delete this block.

This article is issued from Conwaylife. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.