IBM Personal Computer


  • Main
  • Wikipedia
  • All Subpages
  • Create New
    /wiki/IBM Personal Computerwork

    Born in August 1981 due to the Apple II's success, the IBM Personal Computer (dubbed the "5150" in IBM's internal numbering system) was IBM's official entry into the desktop computer system market, and by far their most successful. Earlier attempts, like the 5100 desktop APL machine and the DisplayWriter word-processing machine, hadn't taken off, and IBM needed something fast to compete with Apple. Bypassing the IBM bureaucracy, in 1980 they tasked a team of engineers in an IBM office in Florida with developing the new machine, and gave them unusual amounts of freedom in developing the new system. It was built almost completely out of off-the-shelf parts and had generous amounts of expansion capability. As for the processor, the team settled on Intel's 16-bit 8088. The 8088 was chosen mainly for cost and time-to-market reasons. To ensure a steady supply of 8088s, IBM and Intel recruited Advanced Micro Devices (AMD) to act as a second source, a decision that would have some importance later.

    History

    The other big influence on the IBM PC's design was the world of S-100 machines, which were based around the Intel 8080 (or, later the Zilog Z80) and the "S-100" bus that had been introduced in the pioneering Altair 8800. These machines ran an OS called CP/M, which had been invented by a programmer named Gary Kildall in 1974 and was based indirectly on Digital Equipment Corp.'s RSX-11 Operating System for the PDP-11. While they weren't nearly as slick as the Apple II, S-100 machines were popular with hobbyists and businesses alike, and several CP/M applications for businesses, like WordStar and dBASE were making inroads.

    S-100 machines were large, server-style boxes with a large amount of slots inside, plugged into a central backplane with power and data signals on it. The cards themselves were large and nearly square. To save space, IBM decided against using the S-100 backplane system, and instead went with Apple II-style cards that were long and rectangular, with a 62-pin edge connector near the back end of the card. IBM also added a sheet-metal bracket to the back of the card to add some structural stability. Since the PC used a regulated, switching power supply, the hot-running secondary regulators that S-100 cards used were also no longer necessary.

    In one break with the Apple II's precedent, and as an improvement on the serial consoles S-100 machines used, IBM decided to leave the graphics system off the motherboard and provide two add-on cards -- a text-only Monochrome Display Adapter (MDA)[1], intended for business users, and a Color/Graphics Adapter (CGA), for games, education and emulating other color-capable IBM hardware. This was done to allow buyers a choice in the video hardware, as well as to save space on the motherboard. While MDA was widely praised for its outstanding clarity and readability, especially when combined with IBM's original 5151 monitor, which showed off MDA's effective 720×350 resolution, CGA had a barely adequate 320×200 [2] or seriously weird 640×200 and was nearly universally panned. Still, it wasn't until the advent of EGA in 1984 that anything more adequate appeared, so everybody still used it -- or a third-party Hercules monochrome card, which could address individual pixels, unlike the MDA, but was much more expensive.

    The base system came with just 64K, like the Apple II, but could be expanded to a then-breathtaking 640K thanks to the Intel 8088 processor inside, which had a 1 MB address space (huge for a desktop machine in 1981). It even had BASIC in ROM, just like the Apple II.

    IBM followed up the PC with the XT in 1983, which removed the original PC's cassette interface and made a hard drive option available. 1983 also saw the introduction of the PCjr, a severely crippled version of the XT intended for home use; its main claims to fame were the addition of a 16-color, 320×200 graphics mode and an internal 4-voice PSG (the same TI model used in the ColecoVision). Next was the PC/AT in 1984, which introduced the 80286 processor and a fully 16-bit architecture, along with the Enhanced Graphics Adapter (EGA), which finally made 16-color graphics (in resolutions all the way up to 640×350) possible on a regular PC.

    The Rise of the Clones

    At first, the IBM PC didn't have much to offer home users and gamers. It was new, expensive, not as good with graphics as the Apple II or the Atari 800, and was directed squarely at business users. However, IBM's name on the machine made it a safe buy for businesses that already used IBM hardware, and they ended up buying the machines in droves. The machine's open design sparked a huge third-party expansion market, with dozens of vendors selling memory expansion boards, hard drive upgrades and more. It wasn't long until other computer makers started examining the PC's design and figuring out how to make clones of the machine that could run PC software without issues. The one thing stopping them, however, was the ROM. IBM had a copyright on what they called the "ROM BIOS", and while cloning the hardware was easy, cloning the ROM would be much harder, with few vendors able to get it completely right. It wasn't until Compaq introduced the Portable in 1983 that a truly 100% IBM compatible PC was available, and after that, software houses such as Phoenix and AMI followed suit, opening the floodgates to an entire industry of low-priced PC compatibles.

    IBM also had another problem to deal with: Microsoft. When the PC was first being developed, IBM decided they wanted to license an outside OS rather than attempt to write their own, and their first choice would have been CP/M. However, when they tried to meet with Gary Kildall to license it, he wasn't around to sign the papers; the full details are unclear and have become something of a legend, but in the end, IBM didn't get CP/M. What they did get was the product of another little-known Seattle software developer's own frustration with CP/M: MS-DOS. MS-DOS began life as an admittedly "quick and dirty" clone of CP/M, written by a developer named Tim Patterson at Seattle Computer Products.

    SCP was mostly a hardware outfit, whose business was in memory upgrades and other add-ons to the aforementioned S-100 machines. When the 8086 appeared on the market, they wanted to use it and quickly threw together a prototype machine. Digital Research had promised an 8086/8088 port of CP/M for a long time and never delivered until it was too late, leading Patterson to write his own and name it "86-DOS" or "Q-DOS" (depending on who you ask). Microsoft, who had already basically lied to IBM and said they had something ready (they did; it was called Xenix--but it was a UNIX OS, and IBM wouldn't accept that. Xenix was later sold to the SCO Group), paid SCP and Patterson $10,000 for the rights to 86-DOS, did some quick editing and released that as MS-DOS/PC-DOS 1.0. Microsoft also put language in their contract with IBM, stating that they had the right to license MS-DOS to whoever they wanted without first seeking IBM's approval. This had serious implications for the PC clone business, as it meant that once the clone makers, AMI and Phoenix had opened the floodgates on the hardware side, Microsoft could sell the hardware makers MS-DOS, thus creating a complete package -- and a huge pain for IBM.

    IBM Tries to Win Back the Crowd

    In 1986 Compaq beat IBM to the punch with the first PC to use the new, 32-bit 80386 processor. Between the clone armies and Compaq's meteoric rise, IBM decided that if it couldn't compete on price, it would compete on features, and introduce a new standard that they alone would control.

    The result was the Personal System/2 (or PS/2 for short), a line of new PC-based machines that were deliberately much different from the prevailing PC standards. The new machines used a new, IBM-proprietary expansion bus called "Micro Channel", which was faster than the AT's bus (by now referred to as "ISA" for "Industry Standard Architecture") but completely incompatible and protected by IBM patents, requiring anyone who wanted to use it to go through a lengthy licensing process and pay royalties. The other major feature the PS/2 line introduced was a new video subsystem called Video Graphics Array (VGA), a substantial upgrade to EGA that added a new 640×480 high-resolution mode (familiar now as the mode Windows 2000 and XP use for their splash screens), analog RGB video with an 18-bit palette (over 262,000 colors), and up to 256 colors on-screen at once. VGA was accepted by the rest of the industry enthusiastically, with 100% VGA compatibility becoming a must for video-card makers.

    Wintel Comes And Wins

    After years of being confined to what were basically fleet sales, IBM discontinued the PS/2 line and MCA in the mid-1990s, preferring instead to concentrate on the revived "IBM PC" brand (new, ISA/PCI-based machines sold as business desktops) and the highly successful ThinkPad line of notebooks, which was introduced in 1992. This marked the end of IBM's dominance of the PC clone market, with the balance of power now shifted to Microsoft, Intel and the clonemakers.

    As a footnote, IBM themselves left the personal computer business for good in 2005, selling their PC division to a Chinese company named Lenovo (hence Lenovo now sells the Thinkpad).

    Specifications

    IBM PC:

    • Intel 8088 processor running at 4.77 MHz
    • 64K RAM, expandable to 640K; some expansion systems could backfill up to 736K if you were using an MDA
    • Eight 8-bit expansion slots
    • Keyboard and cassette ports
    • Optional single or dual 5¼" floppy drives
    • Could be ordered with either an MDA (80×25 text only with blink, bold, underline and reverse-video effects) or a CGA (80×25 or 40×25 text in 16 colors, 320×200 in four colors, 640×200 monochrome; a hacked 160×100 16-color mode was also available)
      • CGA's 80×25 text mode was a joke. Unlike the similar MDA's mode it used 8×8 matrix for a one symbol, which, accounting for letter and row separations, left only 7×7 for symbol itself, at best. MDA's character tile resolution was 9×14, a feat unmatched at least until VGA, and allowing for a then unprecedented text clarity and readability -- and not a small selling booster for the early models, which were used mostly as office machines. CGA characters, in contrast, looked ugly, grainy and were nigh unreadable. Several clone vendors (most notably Compaq and AT&T/Olivetti) remedied this by providing a double-scan text mode, which ran at 640×400 and used a much more legible 8×16 character matrix.

    IBM PC/XT

    • Same as the PC, except with more memory, standard floppy drives and a hard disk option
    • Cassette port removed

    IBM PC/AT

    • Intel 80286 processor running at 6 or 8 MHz, depending on age
    • Up to 16 MB "extended" memory using add-on cards
    • Eight expansion slots -- six 16-bit, two 8-bit
    • 20 or 40 MB high-performance hard drive
    • Single or dual "high density" floppy drives
    • Optional MDA, CGA, EGA or the rare and expensive Professional Graphics Controller, an early GPU meant for CAD use
      • When it became obvious that MCA bus isn't taking off, IBM released the ISA version of VGA, which became the video card of choice for years to come.

    Games

    Exclusive titles and Multi Platform games that started here

    Ports

    1. Also often called MDPA, because it also carried a parallel port for connecting a printer
    2. with just four colors and two hideously ugly palettes -- red-green-yellow one didn't even have a true white, which is why cyan-purple-white was much more widely used, even if it was even more shitty-looking
    This article is issued from Allthetropes. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.