Uranyl nitrate

Uranyl nitrate (UO2(NO3)2) is a water soluble yellow uranium salt. The yellow-green[5] crystals of dioxouranium nitrate hexahydrate are triboluminescent.

Uranyl nitrate
Names
IUPAC name
(T-4)-bis(nitrato-κO)dioxouranium
Other names
Uranium nitrate
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.030.229
UNII
Properties
UO2(NO3)2
Molar mass 394.04 g/mol
Appearance yellow-green solid
hygroscopic
Density 2.81 g/cm3
Melting point 60.2[1] °C (140.4 °F; 333.3 K)
Boiling point 118[2] °C (244 °F; 391 K) (decomposition)
g/100g H2O: 98 (0°C), 122 (20°C), 474 (100°C)[3]
Solubility in tributyl phosphate soluble
Hazards
Safety data sheet External MSDS
T+
N
R-phrases (outdated) R26/28, R33, R51/53
S-phrases (outdated) (S1/2), S20/21, S45, S61
NFPA 704 (fire diamond)
Flash point Non-flammable
Lethal dose or concentration (LD, LC):
12 mg/kg (dog, oral)
238 (cat, oral)[4]
Related compounds
Other anions
Uranyl chloride
Uranyl sulfate
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YN ?)
Infobox references

Uranyl nitrate can be prepared by reaction of uranium salts with nitric acid. It is soluble in water, ethanol, acetone, and ether, but not in benzene, toluene, or chloroform.

Uses

During the first half of the 19th century, many photosensitive metal salts had been identified as candidates for photographic processes, among them uranyl nitrate. The prints thus produced were called uranium prints, urbanities, or more commonly, uranotypes. The first uranium printing processes were invented by Scotsman J. Charles Burnett between 1855 and 1857, and used this compound as the sensitive salt. Burnett authored a 1858 article comparing "Printing by the Salts of the Uranic and Ferric Oxides" The process employs the ability of the uranyl ion to pick up two electrons and reduce to the lower oxidation state of uranium(IV) under ultraviolet light. Uranotypes can vary from print to print from a more neutral, brown russet to strong Bartolozzi red, with a very long tone grade. Surviving prints are slightly radioactive, a property which serves as a means of non-destructively identifying them. Several other more elaborate photographic processes employing the compound appeared and vanished during the second half of the 19th century with names like Wothlytype, Mercuro-Uranotype and the Auro-Uranium process. Uranium papers were manufactured commercially at least until the end of the 19th century, vanishing due to the superior sensitivity and practical advantages of silver halides. From the 1930s through the 1950s Kodak Books described a uranium toner (Kodak T-9) using uranium nitrate hexahydrate. Some alternative process photographers including Blake Ferris and Robert Schramm continue to make uranotype prints today.

Along with uranyl acetate it is used as a negative stain for viruses in electron microscopy; in tissue samples it stabilizes nucleic acids and cell membranes.

Uranyl nitrate was used to fuel Aqueous Homogeneous Reactors in the 1950s as an alternative to the more corrosive uranyl sulfate. However, research focus was on heterogeneous reactor designs and the experiments were abandoned.

Uranyl nitrate is important for nuclear reprocessing. It is the compound of uranium that results from dissolving the decladded spent nuclear fuel rods or yellowcake in nitric acid, for further separation and preparation of uranium hexafluoride for isotope separation for preparing of enriched uranium.

Health and environmental issues

Uranyl nitrate is an oxidizing and highly toxic compound. When ingested, it causes severe chronic kidney disease and acute tubular necrosis and is a lymphocyte mitogen. Target organs include the kidneys, liver, lungs and brain. It also represents a severe fire and explosion risk when heated or subjected to shock in contact with oxidizable substances.

References

Salts and covalent derivatives of the nitrate ion
HNO3 He
LiNO3 Be(NO3)2 B(NO
3
)
4
RONO2 NO
3

NH4NO3
HOONO2 FNO3 Ne
NaNO3 Mg(NO3)2 Al(NO3)3 Si P S ClONO2 Ar
KNO3 Ca(NO3)2 Sc(NO3)3 Ti(NO3)4 VO(NO3)3 Cr(NO3)3 Mn(NO3)2 Fe(NO3)2
Fe(NO3)3
Co(NO3)2
Co(NO3)3
Ni(NO3)2 CuNO3
Cu(NO3)2
Zn(NO3)2 Ga(NO3)3 Ge As Se Br Kr
RbNO3 Sr(NO3)2 Y(NO3)3 Zr(NO3)4 Nb Mo Tc Ru(NO3)3 Rh(NO3)3 Pd(NO3)2
Pd(NO3)4
AgNO3
Ag(NO3)2
Cd(NO3)2 In Sn Sb(NO3)3 Te I Xe(NO3)2
CsNO3 Ba(NO3)2   Hf Ta W Re Os Ir Pt(NO3)2
Pt(NO3)4
Au(NO3)3 Hg2(NO3)2
Hg(NO3)2
TlNO3
Tl(NO3)3
Pb(NO3)2 Bi(NO3)3
BiO(NO3)
Po(NO3)4 At Rn
FrNO3 Ra(NO3)2   Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
La(NO3)3 Ce(NO3)3
Ce(NO3)4
Pr(NO3)3 Nd(NO3)3 Pm(NO3)3 Sm(NO3)3 Eu(NO3)3 Gd(NO3)3 Tb(NO3)3 Dy(NO3)3 Ho(NO3)3 Er(NO3)3 Tm(NO3)3 Yb(NO3)3 Lu(NO3)3
Ac(NO3)3 Th(NO3)4 PaO2(NO3)3 UO2(NO3)2 Np(NO3)4 Pu(NO3)4 Am(NO3)3 Cm(NO3)3 Bk Cf Es Fm Md No Lr
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.