Whitney umbrella

In mathematics, the Whitney umbrella (or Whitney's umbrella, named after American mathematician Hassler Whitney, and sometimes called a Cayley umbrella) is a specific self-intersecting surface placed in three dimensions. It is the union of all straight lines that pass through points of a fixed parabola and are perpendicular to a fixed straight line, parallel to the axis of the parabola and lying on its perpendicular bisecting plane.

Section of the surface

Formulas

Whitney's umbrella can be given by the parametric equations in Cartesian coordinates

where the parameters u and v range over the real numbers. It is also given by the implicit equation

This formula also includes the negative z axis (which is called the handle of the umbrella).

Properties

Whitney umbrella as a ruled surface, generated by a moving straight line
Whitney umbrella made with a single string inside a plastic cube

Whitney's umbrella is a ruled surface and a right conoid. It is important in the field of singularity theory, as a simple local model of a pinch point singularity. The pinch point and the fold singularity are the only stable local singularities of maps from R2 to R3.

It is named after the American mathematician Hassler Whitney.

In string theory, a Whitney brane is a D7-brane wrapping a variety whose singularities are locally modeled by the Whitney umbrella. Whitney branes appear naturally when taking Sen's weak coupling limit of F-theory.

gollark: Which politicians avoid like the plague.
gollark: "You're fine with us wiretapping a few people, right? So surely it's fine to spy on all internet use constantly?"
gollark: Unfortunately, the slippery slope thing does actually *happen*, a lot.
gollark: Amazingly enough, there is often space between "do nothing" and "go massively overboard".
gollark: They should at least ban unvaccinated people from, say, schools.

See also

References

  • "Whitney's Umbrella". The Topological Zoo. The Geometry Center. Retrieved 2006-03-08. (Images and movies of the Whitney umbrella.)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.