Van Lamoen circle

In Euclidean plane geometry, the van Lamoen circle is a special circle associated with any given triangle . It contains the circumcenters of the six triangles that are defined inside by its three medians.[1][2]

The van Lamoen circle through six circumcenters , , , , ,

Specifically, let , , be the vertices of , and let be its centroid (the intersection of its three medians). Let , , and be the midpoints of the sidelines , , and , respectively. It turns out that the circumcenters of the six triangles , , , , , and lie on a common circle, which is the van Lamoen circle of .[2]

History

The van Lamoen circle is named after the mathematician Floor van Lamoen who posed it as a problem in 2000.[3][4] A proof was provided by Kin Y. Li in 2001,[4] and the editors of the Amer. Math. Monthly in 2002.[1][5]

Properties

The center of the van Lamoen circle is point in Clark Kimberling's comprehensive list of triangle centers.[1]

In 2003, Alexey Myakishev and Peter Y. Woo proved that the converse of the theorem is nearly true, in the following sense: let be any point in the triangle's interior, and , , and be its cevians, that is, the line segments that connect each vertex to and are extended until each meets the opposite side. Then the circumcenters of the six triangles , , , , , and lie on the same circle if and only if is the centroid of or its orthocenter (the intersection of its three altitudes).[6] A simpler proof of this result was given by Nguyen Minh Ha in 2005.[7]

gollark: *But* efficient ones do actually have to be designed.
gollark: If you want efficient design it is more thinky.
gollark: It's not as if the HECf reactors run efficiently at all.
gollark: Oh nooooo, how horrible, people are designing high-heat reactors and using them on low-heat stuff...
gollark: <@222954376677949442> I don't see if it matters if people make HECf ones and run other fuels in them. Under the current rules they're worse than other designs for efficiency and stuff anyway.

See also

  • Parry circle
  • Lester circle

References

  1. Clark Kimberling (), X(1153) = Center of the van Lemoen circle, in the Encyclopedia of Triangle Centers Accessed on 2014-10-10.
  2. Eric W. Weisstein, van Lamoen circle at Mathworld. Accessed on 2014-10-10.
  3. Floor van Lamoen (2000), Problem 10830 American Mathematical Monthly, volume 107, page 893.
  4. Kin Y. Li (2001), Concyclic problems. Mathematical Excalibur, volume 6, issue 1, pages 1-2.
  5. (2002), Solution to Problem 10830. American Mathematical Monthly, volume 109, pages 396-397.
  6. Alexey Myakishev and Peter Y. Woo (2003), On the Circumcenters of Cevasix Configuration. Forum Geometricorum, volume 3, pages 57-63.
  7. N. M. Ha (2005), Another Proof of van Lamoen's Theorem and Its Converse. Forum Geometricorum, volume 5, pages 127-132.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.