Ultrawide formats

Ultrawide formats refers to photos, videos[1] and displays[2] with aspect ratio greater than 2. There were multiple moves in history towards wider formats, including one by Disney,[3] some of them being more successful than the other.

Cameras usually capture ultra-wide photos and videos using anamorphic format lens, which shrinks the extended horizontal FOV while saving on film or disk.[4]

Historic displays

Before monitors became a separate product line, televisions were used as monitors,[5] for computers such as Timex Sinclair 1000.

4:3

4:3 was the aspect ratio used by 35 mm silent films. By having televisions match this aspect ratio, movies originally photographed in 4:3 could be satisfactorily viewed on SDTV.

NTSC (480i)

NTSC (National Television Standards Committee) broadcasts were analogue and intended for analogue NTSC displays. It was developed and implemented by the NTSC in the United States in 1954. It also saw widespread international adoption by trade partners of the US. When converted to the Digital Video format, DV NTSC has a 3:2 aspect ratio, a resolution of 720x480i, and a refresh rate of 60 Hz.

PAL (576i)

PAL (Phase Alternating Line) broadcasts were analogue broadcasts, meant for PAL analogue displays. It was developed in 1967 by United Kingdom & Germany, and implemented is most countries. When converted to Digital Video format, DV PAL has a 5:4 resolution of 720×576i running at 50 Hz.

32:27

32:27 was originally developed for compressed video storage in cameras, meant to be displayed in anamorphic x1.5 as 16:9. 640×540i was such a 32:27 resolution running at 50 Hz and 100 Hz, meant for cameras.

Panasonic's DVCPRO HD[6] with a resolution of 1280×1080i was latest in the line of 32:27 video formats for cameras. Hitachi's 42" and 50" 1280×1080i televisions, like the P50T501, were the last line of 32:27 consumer displays.[7]

32:27 is derived from 4:3 aspect ratio.

Historic Ultrawide Cinema

Historically ultrawide movie formats have varied between ~2.35:1 (1678:715), ~2.39:1 (1024:429) and 2.4:1. To complicate matters further, films were also produced in 2.55:1, 2.76:1 and 4:1. Developed by Rowe E. Carney Jr. and Tom F. Smith, the Smith-Carney System used a 3 camera system, with 4.6945:1 (1737:370) ratio, to project movies in 180°. [8] Disney even created a 6.85:1 format, using 5 projectors to display 200°. The only movie filmed in Disney's 6.85:1 format is Impressions de France.[3]

Modern displays

Widescreen revolution

European widescreen

European widescreen format was a 5:3 (15:9) resolution of 800x480 and 1280x768 with progressive scan. Developed in 1969 by Rune Ericson, Super 16 mm was widely used in Europe, before the move to 16:9.

16:10

16:9

Suggested by Dr. Kerns H. Powers of SMPTE in USA, the 16:9 aspect ratio was developed to unify all other aspect ratios. 16:9 was first adopted in the USA.

16:9 aspect ratio is 4:3 squared.

Around 2007, cameras and screens began to switch from 15:9 and 16:10 to 16:9 resolutions. Aspect ratio of 16:9 is currently the worldwide standard for 'widescreen' and HDTV.

Univisium revolution

Univisium is an aspect ratio of 2:1, created by Vittorio Storaro of ASC in USA, to unify all other aspect ratios. It is popular on Smartphones and cheap VR displays. VR displays half the screen into two, one for each eye. So a 2:1 VR screen would be halved into two 1:1 screens. Currently smartphones are moving to 2:1 aspect ratio, advertised as 18:9.

Ultrawide Cinema

21:9 is a consumer electronics (CE) marketing term to describe the ultra-widescreen aspect ratio of 64:27 (2.370:1) = 1024:432 for multiples of 1080 lines. It is used for multiple anamorphic formats and DCI 1024:429 (21.482517:9), but also for ultrawide computer monitors, including 43:18 (2112:9) for resolutions based on 720 lines and 12:5 (2135:9) for ultrawide variants of resolutions based either on 960 pixels width or 900 lines height.

The 64:27 aspect ratio is the logical extension of the existing video aspect ratios 4:3 and 16:9. It is the third power of 4:3, whereas 16:9 of widescreen HDTV is 4:3 squared. This allows electronic scalers and optical anamorphic lenses to use an easily implementable 4:3 (1.33:1) scaling factor.

21:9 movies usually refers to 1024:429 ≈ 2.387:1, the aspect ratio of digital ultrawide cinema formats, which is often rounded up to 2.39:1 or 2.4:1.

List of ultrawide "21:9" monitor resolutions
Common nameTechnical nameAspect ratioResolution
WFHDultrawide 108064∶272113∶92.3702560 × 1080
WQHDultrawide 144043∶182112∶92.383440 × 1440
WQHD+ultrawide 160012∶52135∶92.43840 × 1600
WUHDultrawide 216064∶272113∶92.3705120 × 2160
UW 5Kultrawide 240012∶52135∶92.45760 × 2400
UW 7Kultrawide 320012∶52135∶92.47680 × 3200
UW 8Kultrawide 360012∶52135∶92.48640 × 3600
UW 10Kultrawide 432064∶272113∶92.37010240 × 4320

Ultra-Widescreen 3.6

In 2016, IMAX announced the release of films in 'Ultra-WideScreen 3.6' format,[9] with an aspect ratio of 18:5 (36:10).[10] A year later, Samsung and Phillips announced 'super ultra-wide displays', with aspect ratio of 32:9, for "iMax-style cinematic viewing".[11] Panacast developed a 32:9 webcam with three integrated cameras giving 180° view, and resolution matching upcoming 5K 32:9 monitors, 5120x1440.[12] In 2018 Q4, Dell released the U4919DW, a 5K 32:9 monitor with a resolution of 5120x1440, and Phillips announced the 499P9H with the same resolution. 32:9 Ultrawide monitors are often sold as an alternative to dual 16:9 monitor setups and for more inmersive experiences while playing videogames, and many are capable of displaying 2 16:9 inputs at the same time.

32:9 aspect ratio is derived from 16:9 being twice as large.

Super wide resolutions refers to that with aspect ratio greater than 3.

List of super wide monitor resolutions
Common nameTechnical nameAspect ratioResolution
DFHDsuper wide 32:9 108032:93.53840×1080
DFHD+super wide 16:5 120016:53.23840×1200
SWFHD+super wide 18:5 120018:53.64320×1200
DQHDsuper wide 32:9 144032:93.55120×1440
DQHD+super wide 16:5 160016:53.25120×1600
SWQHD+super wide 18:5 160018:53.65760×1600
16:5 5Ksuper wide 16:5 180016:53.25760×1800
32:9 6Ksuper wide 32:9 180032:93.56400×1800
18:5 6Ksuper wide 18:5 180018:53.66480×1800
DUHDsuper wide 32:9 216032:93.57680×2160
DUHD+super wide 16:5 240016:53.27680×2400
18:5 8Ksuper wide 18:5 240018:53.68640×2400

Ultra-WideScreen 3.6 video never spread, as cinemas in an even wider ScreenX 270° format were released.[13]

4:1

Abel Gance was a filmmaker, far ahead of his time. When every one else was making movies in 4:3, Abel Glance made a film in 4:1.

He made a rare use of Polyvision, three 35 mm 1.3:1 images projected side by side in Napoléon (1927 film).

Recently, Sony introduced a 64-foot-wide by 18-foot-tall commercial 16K display at NAB 2019 that is set to be released in Japan.[14][15] It is made up of 576 modules(360x360p), in a formation of 48 by 12 modules, forming a 17280x4320p screen, with 4:1 aspect ratio.

Screen X

Screen X 270° cinema concept

Developed by CJ CGV, Screen X uses three(or more) projectors to display 270° content,[13] with an unknown aspect ratio above 4:1. Walls on both sides of a ScreenX theatre are used as projector screens.

Comparison

Decimal valueAspect ratioFormat nameResolutionsLens & Film
1.18532:27DVCPRO HD640×540, 1280×10801x
1.255:4DV PAL720×576, 1280×1024, 1500×12001x
1.34:3Video Graphics Array640×480, 960×720, 1440×1080, 1600×1200SDTV
1.53:2DV NTSC / laptops720×480, 1920×1280, 2160×1440, 2256×1504, 2400×1600, 3000×20001x
1.68:516:10 widescreen (PC only)1280×800, 1440×900, 1680×1050, 1920×1200, 2560×1600, 2880×1800, 3072×1920, 3840×2400-
1.65:3European Widescreen800×480, 1280×768Super 16mm
1.716:9Widescreen1920×1080, 2560×1440, 3840×2160, 7680×4320Anamorphic 1.5x on 32:27, HDTV
1.8537:20"Flat" DCI1998×1080, 3996×21601x
1.896296256∶135"Full" DCI2048×1080, 4096×21601x
2.02:1VistaVision / Univisium2160×1080, 2400×1200, 2880×1440, 3200×1600, 3600×1800, 3840×1920, 4320×2160, 4800×2400, 5760×2880VR cameras (most)
2.34685311678:715[16]Cinemascope (1950s–1970s)analogAnamorphic 2x on 35mm with optical audio
2.37064:27"21:9" ultrawide2560×1080, 5120×2160, 7680×3240, 10240×4320Dashcam, Anamorphic 1.33x on 16:9, 1.25x on DCI 256∶135, 2x on 32:27
2.3869461024:429"Scope" DCI cinema format2048×858, 4096×1716, 8192×34321x
2.3843:18"21:9" ultrawide (PC only)3440×1440, 5160×2160, 6880×2880-
2.412:524:10 ultrawide2880×1200, 3840×1600, 4320×1800, 5760×2400, 7680×3200-
2.5551:20Cinemascope 55analogAnamorphic 2x on 35mm without optical audio
2.68:3Cinerama / 24:9 ultrawide (PC)2880×1080, 3840×1440, 5120×1920, 5760×2160, 7680×2880, 10240×3840-
2.7669:25Ultra PanavisionanalogAnamorphic 1.25x on 70mm
3.216:532:10 super wide (PC only)3840×1200, 5120×1600, 5760×1800, 7680×2400, 10240×3200-
3.532:932:9 super wide (PC only)3840×1080, 5120×1440, 7680×2160, 10240×2880-
3.618:536:10 super wide (ultra-widescreen 3.6)4320×1200, 5760×1600, 6480×1800, 8640×24001x
4.04:1Polyvisionanalog / 3 images 4:3 projected side by side3x
gollark: Calculator with PDF rendering on 7 segment display.
gollark: Calculator with static typing.
gollark: Calculator with computational geometric synthesis engine.
gollark: Calculator with inbuilt lisp interpreter.
gollark: I see.

See also

References

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.