Transition rate matrix

In probability theory, a transition rate matrix (also known as an intensity matrix[1][2] or infinitesimal generator matrix[3]) is an array of numbers describing the instantaneous rate at which a continuous time Markov chain transitions between states.

In a transition rate matrix Q (sometimes written A[4]) element qij (for i  j) denotes the rate departing from i and arriving in state j. Diagonal elements qii are defined such that

and therefore the rows of the matrix sum to zero (see condition 3 in the definition section).

Definition

A Q matrix (qij) satisfies the following conditions[5]

This definition can be interpreted as the Laplacian of a directed, weighted graph whose vertices correspond to the Markov chain's states.

Example

An M/M/1 queue, a model which counts the number of jobs in a queueing system with arrivals at rate λ and services at rate μ, has transition rate matrix

gollark: Okay? That doesn't actually mean Google aren't gathering data if you literally use their browser, OS and apps?
gollark: Do you just not care about privacy? All of those (I mean, except cloud storage) seem to be available in open source or more privacy-respecting forms which are *still* free.
gollark: <@209777632324091905> Firefox can do cross-browser syncing *too*, and the "just works" and "has all your data" thing means Google is also probably data-mining you to death.
gollark: What is WRONG™ with Brave Browser?
gollark: They are silly. They should just make it a normal browser app and save people time, storage and RAM.

References

  1. Syski, R. (1992). Passage Times for Markov Chains. IOS Press. doi:10.3233/978-1-60750-950-9-i. ISBN 90-5199-060-X.
  2. Asmussen, S. R. (2003). "Markov Jump Processes". Applied Probability and Queues. Stochastic Modelling and Applied Probability. 51. pp. 39–59. doi:10.1007/0-387-21525-5_2. ISBN 978-0-387-00211-8.
  3. Trivedi, K. S.; Kulkarni, V. G. (1993). "FSPNs: Fluid stochastic Petri nets". Application and Theory of Petri Nets 1993. Lecture Notes in Computer Science. 691. p. 24. doi:10.1007/3-540-56863-8_38. ISBN 978-3-540-56863-6.
  4. Rubino, Gerardo; Sericola, Bruno (1989). "Sojourn Times in Finite Markov Processes". Journal of Applied Probability. Applied Probability Trust. 26 (4): 744–756. JSTOR 3214379.
  5. Norris, J. R. (1997). "Markov Chains". doi:10.1017/CBO9780511810633. ISBN 9780511810633. Cite journal requires |journal= (help)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.