Infinitesimal generator (stochastic processes)

In mathematics specifically, in stochastic analysis the infinitesimal generator of a Feller process (i.e. a continuous-time Markov process satisfying certain regularity conditions) is a partial differential operator that encodes a great deal of information about the process. The generator is used in evolution equations such as the Kolmogorov backward equation (which describes the evolution of statistics of the process); its L2 Hermitian adjoint is used in evolution equations such as the Fokker–Planck equation (which describes the evolution of the probability density functions of the process).

Definition

General case

For a d-dimensional Feller process we define the generator by

whenever this limit exists in , i.e. in the space of continuous functions vanishing at infinity.

This definition parallels the one of infinitesimal generator of -semigroup.

Stochastic differential equations driven by Brownian motion

Let defined on a probability space be an Itô diffusion satisfying a stochastic differential equation of the form:

where is an m-dimensional Brownian motion and and are the drift and diffusion fields respectively. For a point , let denote the law of given initial datum , and let denote expectation with respect to .

The infinitesimal generator of is the operator , which is defined to act on suitable functions by:

The set of all functions for which this limit exists at a point is denoted , while denotes the set of all for which the limit exists for all . One can show that any compactly-supported (twice differentiable with continuous second derivative) function lies in and that:

Or, in terms of the gradient and scalar and Frobenius inner products:

Generators of some common processes

  • For finite-state continuous time Markov chains the generator may be expressed as a transition rate matrix
  • Standard Brownian motion on , which satisfies the stochastic differential equation , has generator , where denotes the Laplace operator.
  • The two-dimensional process satisfying:
where is a one-dimensional Brownian motion, can be thought of as the graph of that Brownian motion, and has generator:
  • The Ornstein–Uhlenbeck process on , which satisfies the stochastic differential equation , has generator:
  • Similarly, the graph of the Ornstein–Uhlenbeck process has generator:
  • A geometric Brownian motion on , which satisfies the stochastic differential equation , has generator:
gollark: Modern supply chains are complex, and while we could not have those you would then lose out on stuff like microelectronics, medical things, and the economies of scale meaning you can have nice things cheaply.
gollark: How is that better? We need widescale coordination to do anything.
gollark: It's *great* if you like dying of otherwise preventable diseases, after a life basically free of any modern amenities consisting of... hunter-gathering, or whatever people did.
gollark: * carcinize
gollark: Suuuuuure.

See also

References

  • Calin, Ovidiu (2015). An Informal Introduction to Stochastic Calculus with Applications. Singapore: World Scientific Publishing. p. 315. ISBN 978-981-4678-93-3. (See Chapter 9)
  • Øksendal, Bernt K. (2003). Stochastic Differential Equations: An Introduction with Applications (Sixth ed.). Berlin: Springer. doi:10.1007/978-3-642-14394-6. ISBN 3-540-04758-1. (See Section 7.3)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.