Timeline of computational physics
The following timeline starts with the invention of the modern computer in the late interwar period.
1930s
- John Vincent Atanasoff and Clifford Berry create the first electronic non-programmable, digital computing device, the Atanasoff–Berry Computer, that lasted from 1937 to 1942.
1940s
- Nuclear bomb and ballistics simulations at Los Alamos and BRL, respectively.[1]
- Monte Carlo simulation (voted one of the top 10 algorithms of the 20th century by Jack Dongarra and Francis Sullivan in the 2000 issue of Computing in Science and Engineering)[2] is invented at Los Alamos by von Neumann, Ulam and Metropolis.[3][4][5]
- First hydrodynamic simulations performed at Los Alamos.[6][7]
- Ulam and von Neumann introduce the notion of cellular automata.[8][9]
1950s
- Equations of State Calculations by Fast Computing Machines introduces the Metropolis–Hastings algorithm.[10] Also, important earlier independent work by Alder and S. Frankel.[11][12]
- Fermi, Ulam and Pasta with help from Mary Tsingou, discover the Fermi–Pasta–Ulam problem.[13]
- Research initiated into percolation theory.[14]
- Molecular dynamics is formulated by Alder and Wainwright.[15]
1960s
- Using computational investigations of the 3-body problem, Minovitch formulates the gravity assist method.[16][17]
- Glauber dynamics is invented for the Ising model.[18]
- Edward Lorenz discovers the butterfly effect on a computer, attracting interest in chaos theory.[19]
- Molecular dynamics is independently invented by Aneesur Rahman.[20]
- W Kohn instigates the development of density functional theory (with LJ Sham and P Hohenberg),[21][22] for which he shared the Nobel Chemistry Prize (1998).[23]
- Kruskal and Zabusky follow up the Fermi–Pasta–Ulam problem with further numerical experiments, and coin the term "soliton".[24][25]
- Kawasaki dynamics is invented for the Ising model.[26]
- Frenchman Verlet (re)discovers a numerical integration algorithm,[27] (first used in 1791 by Delambre, by Cowell and Crommelin in 1909, and by Carl Fredrik Störmer in 1907,[28] hence the alternative names Störmer's method or the Verlet-Störmer method) for dynamics, and the Verlet list.[27]
1970s
- Computer algebra replicates the work of Delaunay in Lunar theory.[29][30][31][32][33]
- Veltman's calculations at CERN lead him and t'Hooft to valuable insights into Renormalizability of Electroweak theory.[34] The computation has been cited as a key reason for the award of the Nobel prize that has been given to both.[35]
- Hardy, Pomeau and de Pazzis introduce the first lattice gas model, abbreviated as the HPP model after its authors.[36][37] These later evolved into lattice Boltzmann models.
- Wilson shows that continuum QCD is recovered for an infinitely large lattice with its sites infinitesimally close to one another, thereby beginning lattice QCD.[38]
1980s
- Italian physicists Car and Parrinello invent the Car–Parrinello method.[39]
- Swendsen–Wang algorithm is invented in the field of Monte Carlo simulations.[40]
- Fast multipole method is invented by Rokhlin and Greengard (voted one of the top 10 algorithms of the 20th century).[41][42][43]
- U. Wolff invents the Wolff algorithm for statistical physics and Monte Carlo simulation.[44]
gollark: Look, you can just use the backdoor disabler mode preinstallation.
gollark: Repeatedly.
gollark: You did, I'm quite sure.
gollark: Especially without sandboxing.
gollark: Also, *don't run random pastebin stuff*!
See also
- Timeline of scientific computing
- Computational physics
- Important publications in computational physics
References
- Ballistic Research Laboratory, Aberdeen Proving Grounds, Maryland.
- "MATH 6140 - Top ten algorithms from the 20th Century". www.math.cornell.edu.
- Metropolis, N. (1987). "The Beginning of the Monte Carlo method" (PDF). Los Alamos Science. No. 15, Page 125.. Accessed 5 may 2012.
- S. Ulam, R. D. Richtmyer, and J. von Neumann(1947). Statistical methods in neutron diffusion. Los Alamos Scientific Laboratory report LAMS–551.
- N. Metropolis and S. Ulam (1949). The Monte Carlo method. Journal of the American Statistical Association 44:335–341.
- Richtmyer, R. D. (1948). Proposed Numerical Method for Calculation of Shocks. Los Alamos, NM: Los Alamos Scientific Laboratory LA-671.
- A Method for the Numerical Calculation of Hydrodynamic Shocks. Von Neumann, J.; Richtmyer, R. D. Journal of Applied Physics, Vol. 21, pp. 232–237
- Von Neumann, J., Theory of Self-Reproducing Automata, Univ. of Illinois Press, Urbana, 1966.
- http://mathworld.wolfram.com/CellularAutomaton.html
- Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. (1953). "Equations of State Calculations by Fast Computing Machines". Journal of Chemical Physics. 21 (6): 1087–1092. Bibcode:1953JChPh..21.1087M. doi:10.1063/1.1699114.
- Unfortunately, Alder's thesis advisor was unimpressed, so Alder and Frankel delayed publication of their results until much later. Alder, B. J. , Frankel, S. P. , and Lewinson, B. A. , J. Chem. Phys., 23, 3 (1955).
- Reed, Mark M. "Stan Frankel". Hp9825.com. Retrieved 1 December 2017.
- Fermi, E. (posthumously); Pasta, J.; Ulam, S. (1955) : Studies of Nonlinear Problems (accessed 25 Sep 2012). Los Alamos Laboratory Document LA-1940. Also appeared in 'Collected Works of Enrico Fermi', E. Segre ed. , University of Chicago Press, Vol.II,978–988,1965. Recovered 21 Dec 2012
- Broadbent, S. R.; Hammersley, J. M. (2008). "Percolation processes". Math. Proc. of the Camb. Philo. Soc.; 53 (3): 629.
- Alder, B. J.; Wainwright, T. E. (1959). "Studies in Molecular Dynamics. I. General Method". Journal of Chemical Physics. 31 (2): 459. Bibcode:1959JChPh..31..459A. doi:10.1063/1.1730376.
- Minovitch, Michael: "A method for determining interplanetary free-fall reconnaissance trajectories," Jet Propulsion Laboratory Technical Memo TM-312-130, pages 38-44 (23 August 1961).
- Christopher Riley and Dallas Campbell, Oct 22, 2012. "The maths that made Voyager possible". BBC News Science and Environment. Recovered 16 Jun 2013.
- R. J. Glauber. "Time-dependent statistics of the Ising model, J. Math. Phys. 4 (1963), 294–307.
- Lorenz, Edward N. (1963). "Deterministic Nonperiodic Flow" (PDF). Journal of the Atmospheric Sciences. 20 (2): 130–141. Bibcode:1963JAtS...20..130L. doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.
- Rahman, A (1964). "Correlations in the Motion of Atoms in Liquid Argon". Phys Rev. 136 (2A): A405–A41. Bibcode:1964PhRv..136..405R. doi:10.1103/PhysRev.136.A405.
- Kohn, Walter; Hohenberg, Pierre (1964). "Inhomogeneous Electron Gas". Physical Review. 136 (3B): B864–B871. Bibcode:1964PhRv..136..864H. doi:10.1103/PhysRev.136.B864.
- Kohn, Walter; Sham, Lu Jeu (1965). "Self-Consistent Equations Including Exchange and Correlation Effects". Physical Review. 140 (4A): A1133–A1138. Bibcode:1965PhRv..140.1133K. doi:10.1103/PHYSREV.140.A1133.
- "The Nobel Prize in Chemistry 1998". Nobelprize.org. Retrieved 2008-10-06.
- Zabusky, N. J.; Kruskal, M. D. (1965). "Interaction of 'solitons' in a collisionless plasma and the recurrence of initial states". Phys. Rev. Lett. 15 (6): 240–243. Bibcode 1965PhRvL..15..240Z. doi:10.1103/PhysRevLett.15.240.
- "Definition of SOLITON". Merriam-webster.com. Retrieved 1 December 2017.
- K. Kawasaki, "Diffusion Constants near the Critical Point for Time-Dependent Ising Models. I. Phys. Rev. 145, 224 (1966)
- Verlet, Loup (1967). "Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard−Jones Molecules". Physical Review. 159 (1): 98–103. Bibcode:1967PhRv..159...98V. doi:10.1103/PhysRev.159.98.
- Press, WH; Teukolsky, SA; Vetterling, WT; Flannery, BP (2007). "Section 17.4. Second-Order Conservative Equations". Numerical Recipes: The Art of Scientific Computing (3rd ed.). New York: Cambridge University Press. ISBN 978-0-521-88068-8.
- Brackx, F.; Constales, D. (1991-11-30). Computer Algebra with LISP and REDUCE: An Introduction to Computer-aided Pure Mathematics. Springer Science & Business Media. ISBN 9780792314417.
- Contopoulos, George (2004-06-16). Order and Chaos in Dynamical Astronomy. Springer Science & Business Media. ISBN 9783540433606.
- Jose Romildo Malaquias; Carlos Roberto Lopes. "Implementing a computer algebra system in Haskell" (PDF). Repositorio.ufop.br. Retrieved 1 December 2017.
- "Computer Algebra" (PDF). Mosaicsciencemagazine.org. Retrieved 1 December 2017.
- Frank Close. The Infinity Puzzle, pg 207. OUP, 2011.
- Stefan Weinzierl:- "Computer Algebra in Particle Physics." pgs 5–7. arXiv:hep-ph/0209234. All links accessed 1 January 2012. "Seminario Nazionale di Fisica Teorica", Parma, September 2002.
- J. Hardy, Y. Pomeau, and O. de Pazzis (1973). "Time evolution of two-dimensional model system I: invariant states and time correlation functions". Journal of Mathematical Physics, 14:1746–1759.
- J. Hardy, O. de Pazzis, and Y. Pomeau (1976). "Molecular dynamics of a classical lattice gas: Transport properties and time correlation functions". Physical Review A, 13:1949–1961.
- Wilson, K. (1974). "Confinement of quarks". Physical Review D. 10 (8): 2445. Bibcode:1974PhRvD..10.2445W. doi:10.1103/PhysRevD.10.2445.
- Car, R.; Parrinello, M (1985). "Unified Approach for Molecular Dynamics and Density-Functional Theory". Physical Review Letters. 55 (22): 2471–2474. Bibcode:1985PhRvL..55.2471C. doi:10.1103/PhysRevLett.55.2471. PMID 10032153.
- Swendsen, R. H., and Wang, J.-S. (1987), Nonuniversal critical dynamics in Monte Carlo simulations, Phys. Rev. Lett., 58(2):86–88.
- L. Greengard, The Rapid Evaluation of Potential Fields in Particle Systems, MIT, Cambridge, (1987).
- Rokhlin, Vladimir (1985). "Rapid Solution of Integral Equations of Classic Potential Theory." J. Computational Physics Vol. 60, pp. 187–207.
- L. Greengard and V. Rokhlin, "A fast algorithm for particle simulations," J. Comput. Phys., 73 (1987), no. 2, pp. 325–348.
- Wolff, Ulli (1989), "Collective Monte Carlo Updating for Spin Systems", Physical Review Letters, 62 (4): 361
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.