The Penguin Book of Modern African Poetry
The Penguin Book of Modern African Poetry (in an earlier 1963 edition Modern Poetry from Africa) is a 1984 poetry anthology edited by Gerald Moore and Ulli Beier. It consists mainly of poems written in English and English translations of French or Portuguese poetry; poems written in African languages were included only in the authors' translations. The poems are arranged by the country of the poet, then by their date of birth. The following sections list the poets included in the collection.
Angola
- Agostinho Neto
- António Jacinto
- Costa Andrade
- Ngudia Wendel
- Jofre Rocha
- Ruy Duarte de Carvalho
Cameroun
- Simon Mpondo
- Mbella Sonne Dipoko
- Patrice Kayo
Cape Verde Islands
- Onésima Silveira
Congo Republic
- Tchicaya U Tam’si
- Jean-Baptiste Tati Loutard
- Emmanuel Dongala
Côte d'Ivoire
- Joseph Miezan Bognini
- Charles Nokan
Guinea
- Ahmed Tidjani Cissé
Madagascar
- Jean-Joseph Rabearivelo
- Flavien Ranaivo
Mauretania
- Oumar Ba
Mauritius
- Edouard Maunick
Mozambique
- José Craveirinha
- Noémia de Sousa
- Valente Malangatana
- Jorge Rebelo
Nigeria
- Gabriel Okara
- Christopher Okigbo
- Wole Soyinka
- John Pepper Clark
- Frank Aig-Imoukhuede
- Okogbuli Wonodi
- Michael Echeruo
- Pol N Ndu
- Onwuchekwa Jemie
- Aig Higo
- Molara Ogundipe-Leslie
- Niyi Osundare
- Odia Ofeimun
- Funso Aiyejina
San Tomé
- Alda do Espirito Santo
Zaire
- Antoine-Rober Bolamba
- Mukala Kadima-Nzuji
Zambia
gollark: ```haskellimport Data.Listimport Data.Bits fib :: Int -> Integerfib n = snd . foldl_ fib_ (1, 0) . dropWhile not $ [testBit n k | k <- let s = bitSize n in [s-1,s-2..0]] where fib_ (f, g) p | p = (f*(f+2*g), ss) | otherwise = (ss, g*(2*f-g)) where ss = f*f+g*g foldl_ = foldl' -- '```
gollark: import Data.Listimport Data.Bits fib :: Int -> Integerfib n = snd . foldl_ fib_ (1, 0) . dropWhile not $ [testBit n k | k <- let s = bitSize n in [s-1,s-2..0]] where fib_ (f, g) p | p = (f*(f+2*g), ss) | otherwise = (ss, g*(2*f-g)) where ss = f*f+g*g foldl_ = foldl' -- '
gollark: 3.1 Using 2x2 matricesThe argument of iterateabove is a linear transformation, so we can represent it as matrix and compute the nth power of this matrix with O(log n) multiplications and additions.For example, using the simple matrix implementation in Prelude extensions,fib n = head (apply (Matrix [[0,1], [1,1]] ^ n) [0,1])
gollark: 0, 1, 1, 2, 3...
gollark: d o n ' t c h a n g e p e r
References
- Gerald Moore (30 August 2007). The Penguin Book of Modern African Poetry. Penguin Books Limited. p. 399. ISBN 978-0-14-191290-5.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.