Tate duality

In mathematics, Tate duality or Poitou–Tate duality is a duality theorem for Galois cohomology groups of modules over the Galois group of an algebraic number field or local field, introduced by John Tate (1962) and Georges Poitou (1967).

Local Tate duality

For a p-adic local field , local Tate duality says there is a perfect pairing of finite groups

where is a finite group scheme and its dual . For a local field of characteristic , the statement is similar, except that the pairing takes values in .[1] The statement also holds for Archimedean fields, though the definition of the cohomology groups looks somewhat different in this case.

Global Tate duality

Given a finite group scheme over a global field , global Tate duality relates the cohomology of with that of using the local pairings constructed above. This is done via the localization maps

where varies over all places of , and where denotes a restricted product with respect to the unramified cohomology groups. Summing the local pairings gives a canonical perfect pairing

One part of Poitou-Tate duality states that, under this pairing, the image of has annihilator equal to the image of for .

The map has a finite kernel for all , and Tate also constructs a canonical perfect pairing

These dualities are often presented in the form of a nine-term exact sequence

Here, the asterisk denotes the Pontryagin dual of a given locally compact abelian group.

All of these statements were presented by Tate in a more general form depending on a set of places of , with the above statements being the form of his theorems for the case where contains all places of . For the more general result, see e.g. Neukirch, Schmidt & Wingberg (2000, Theorem 8.4.4).

Poitou–Tate duality

Among other statements, Poitou–Tate duality establishes a perfect pairing between certain Shafarevich groups. Given a global field , a set S of primes, and the maximal extension which is unramified outside S, the Shafarevich groups capture, broadly speaking, those elements in the cohomology of which vanish in the Galois cohomology of the local fields pertaining to the primes in S.[2]

An extension to the case where the ring of S-integers is replaced by a regular scheme of finite type over was shown by Geisser & Schmidt (2017).

gollark: I wonder what the most popular osmarks.tk page is.
gollark: Make some random long string of hexadecimal, put it on a webpage, get google to index it.
gollark: There's probably some way to artifically create them.
gollark: \
gollark: With a type system.

See also

References

  1. Neukirch, Schmidt & Wingberg (2000, Theorem 7.2.6)
  2. See Neukirch, Schmidt & Wingberg (2000, Theorem 8.6.8) for a precise statement.
  • Geisser, Thomas H.; Schmidt, Alexander (2018), "Poitou-Tate duality for arithmetic schemes", Compositio Mathematica, 154 (9): 2020–2044, arXiv:1709.06913, Bibcode:2017arXiv170906913G, doi:10.1112/S0010437X18007340
  • Haberland, Klaus (1978), Galois cohomology of algebraic number fields, VEB Deutscher Verlag der Wissenschaften, MR 0519872
  • Neukirch, Jürgen; Schmidt, Alexander; Wingberg, Kay (2000), Cohomology of number fields, Springer, ISBN 3-540-66671-0, MR 1737196
  • Poitou, Georges (1967), "Propriétés globales des modules finis", Cohomologie galoisienne des modules finis, Séminaire de l'Institut de Mathématiques de Lille, sous la direction de G. Poitou. Travaux et Recherches Mathématiques, 13, Paris: Dunod, pp. 255–277, MR 0219591
  • Tate, John (1963), "Duality theorems in Galois cohomology over number fields", Proceedings of the International Congress of Mathematicians (Stockholm, 1962), Djursholm: Inst. Mittag-Leffler, pp. 288–295, MR 0175892, archived from the original on 2011-07-17
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.