Sun's curious identity
In combinatorics, Sun's curious identity is the following identity involving binomial coefficients, first established by Zhi-Wei Sun in 2002:
Proofs
After Sun's publication of this identity, five other proofs were obtained by various mathematicians:
- Panholzer and Prodinger's proof via generating functions;
- Merlini and Sprugnoli's proof using Riordan arrays;
- Ekhad and Mohammed's proof by the WZ method;
- Chu and Claudio's proof with the help of Jensen's formula;
- Callan's combinatorial proof involving dominos and colorings.
gollark: I see.
gollark: I have to write some C for purposes, how do I debug horrible constant segfaults?
gollark: What was the palaiologosolution™?
gollark: I totally do. You'll be utter dodecahedra about it.
gollark: Sure, but it may become that.
References
- Callan, D. (2004), "A combinatorial proof of Sun's 'curious' identity" (PDF), INTEGERS: The Electronic Journal of Combinatorial Number Theory, 4: A05, arXiv:math.CO/0401216.
- Chu, W.; Claudio, L.V.D. (2003), "Jensen proof of a curious binomial identity" (PDF), INTEGERS: The Electronic Journal of Combinatorial Number Theory, 3: A20.
- Ekhad, S. B.; Mohammed, M. (2003), "A WZ proof of a 'curious' identity" (PDF), INTEGERS: The Electronic Journal of Combinatorial Number Theory, 3: A06.
- Merlini, D.; Sprugnoli, R. (2002), "A Riordan array proof of a curious identity" (PDF), INTEGERS: The Electronic Journal of Combinatorial Number Theory, 2: A08.
- Panholzer, A.; Prodinger, H. (2002), "A generating functions proof of a curious identity" (PDF), INTEGERS: The Electronic Journal of Combinatorial Number Theory, 2: A06.
- Sun, Zhi-Wei (2002), "A curious identity involving binomial coefficients" (PDF), INTEGERS: The Electronic Journal of Combinatorial Number Theory, 2: A04.
- Sun, Zhi-Wei (2008), "On sums of binomial coefficients and their applications", Discrete Mathematics, 308 (18): 4231–4245, arXiv:math.NT/0404385, doi:10.1016/j.disc.2007.08.046.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.