Subsequence

In mathematics, a subsequence is a sequence that can be derived from another sequence by deleting some or no elements without changing the order of the remaining elements. For example, the sequence is a subsequence of obtained after removal of elements , , and . The relation of one sequence being the subsequence of another is a preorder.

Subsequences should not be confused with substrings such as which can be derived from the above string by deleting substring . The substring is a refinement of the subsequence.

The list of all subsequences for the word "apple" would be "a", "ap", "al", "ae", "app", "apl", "ape", "ale", "appl", "appe", "aple", "apple", "p", "pp", "pl", "pe", "ppl", "ppe", "ple", "pple", "l", "le", "e", "".

Common subsequence

Given two sequences X and Y, a sequence Z is said to be a common subsequence of X and Y, if Z is a subsequence of both X and Y. For example, if

and
and

then is said to be a common subsequence of X and Y.

This would not be the longest common subsequence, since Z only has length 3, and the common subsequence has length 4. The longest common subsequence of X and Y is .

Applications

Subsequences have applications to computer science,[1] especially in the discipline of bioinformatics, where computers are used to compare, analyze, and store DNA, RNA, and protein sequences.

Take two sequences of DNA containing 37 elements, say:

SEQ1 = ACGGTGTCGTGCTATGCTGATGCTGACTTATATGCTA
SEQ2 = CGTTCGGCTATCGTACGTTCTATTCTATGATTTCTAA

The longest common subsequence of sequences 1 and 2 is:

LCS(SEQ1,SEQ2) = CGTTCGGCTATGCTTCTACTTATTCTA

This can be illustrated by highlighting the 27 elements of the longest common subsequence into the initial sequences:

SEQ1 = ACGGTGTCGTGCTATGCTGATGCTGACTTATATGCTA
SEQ2 = CGTTCGGCTATCGTACGTTCTATTCTATGATTTCTAA

Another way to show this is to align the two sequences, i.e., to position elements of the longest common subsequence in a same column (indicated by the vertical bar) and to introduce a special character (here, a dash) in one sequence when two elements in the same column differ:

SEQ1 = ACGGTGTCGTGCTAT-G--C-TGATGCTGA--CT-T-ATATG-CTA-
        | || ||| ||||| |  | |  | || |  || | || |  |||
SEQ2 = -C-GT-TCG-GCTATCGTACGT--T-CT-ATTCTATGAT-T-TCTAA

Subsequences are used to determine how similar the two strands of DNA are, using the DNA bases: adenine, guanine, cytosine and thymine.

Theorems

gollark: Also heretics.
gollark: I still have two cult roles and I can use it.
gollark: You *don't* have access? Weird.
gollark: Probably a lot of people. I think the statistic is that 2-ish people die worldwide, per second, and my research suggests that slipping is more frequent than dying.
gollark: I'm doing GCSEs too, still not certain exactly what's happening with that.

See also

Notes

  1. In computer science, string is often used as a synonym for sequence, but it is important to note that substring and subsequence are not synonyms. Substrings are consecutive parts of a string, while subsequences need not be. This means that a substring of a string is always a subsequence of the string, but a subsequence of a string is not always a substring of the string, see: Gusfield, Dan (1999) [1997]. Algorithms on Strings, Trees and Sequences: Computer Science and Computational Biology. USA: Cambridge University Press. p. 4. ISBN 0-521-58519-8.

This article incorporates material from subsequence on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.