Subfunctor

In category theory, a branch of mathematics, a subfunctor is a special type of functor that is an analogue of a subset.

Definition

Let C be a category, and let F be a contravariant functor from C to the category of sets Set. A contravariant functor G from C to Set is a subfunctor of F if

  1. For all objects c of C, G(c) ⊆ F(c), and
  2. For all arrows f: c  c of C, G(f) is the restriction of F(f) to G(c).

This relation is often written as GF.

For example, let 1 be the category with a single object and a single arrow. A functor F: 1  Set maps the unique object of 1 to some set S and the unique identity arrow of 1 to the identity function 1S on S. A subfunctor G of F maps the unique object of 1 to a subset T of S and maps the unique identity arrow to the identity function 1T on T. Notice that 1T is the restriction of 1S to T. Consequently, subfunctors of F correspond to subsets of S.

Remarks

Subfunctors in general are like global versions of subsets. For example, if one imagines the objects of some category C to be analogous to the open sets of a topological space, then a contravariant functor from C to the category of sets gives a set-valued presheaf on C, that is, it associates sets to the objects of C in a way that is compatible with the arrows of C. A subfunctor then associates a subset to each set, again in a compatible way.

The most important examples of subfunctors are subfunctors of the Hom functor. Let c be an object of the category C, and consider the functor Hom(, c). This functor takes an object c of C and gives back all of the morphisms c  c. A subfunctor of Hom(, c) gives back only some of the morphisms. Such a subfunctor is called a sieve, and it is usually used when defining Grothendieck topologies.

Open subfunctors

Subfunctors are also used in the construction of representable functors on the category of ringed spaces. Let F be a contravariant functor from the category of ringed spaces to the category of sets, and let GF. Suppose that this inclusion morphism G  F is representable by open immersions, i.e., for any representable functor Hom(, X) and any morphism Hom(, X)  F, the fibered product G×FHom(, X) is a representable functor Hom(, Y) and the morphism Y  X defined by the Yoneda lemma is an open immersion. Then G is called an open subfunctor of F. If F is covered by representable open subfunctors, then, under certain conditions, it can be shown that F is representable. This is a useful technique for the construction of ringed spaces. It was discovered and exploited heavily by Alexandre Grothendieck, who applied it especially to the case of schemes. For a formal statement and proof, see Grothendieck, Éléments de géométrie algébrique, vol. 1, 2nd ed., chapter 0, section 4.5.

gollark: I wonder if someone made some sort of github-pages-type thing for gitea.
gollark: osmarks projects hosting™ has an amazing 12 repos.
gollark: ... does gitea really have its own internal task scheduler and queue mechanism?
gollark: git.osmarks.tk™️ even has advanced "full code search" technology.
gollark: > would you like to host one of my repos?... possibly, although I'm worried now.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.