Simplicial sphere

In geometry and combinatorics, a simplicial (or combinatorial) d-sphere is a simplicial complex homeomorphic to the d-dimensional sphere. Some simplicial spheres arise as the boundaries of convex polytopes, however, in higher dimensions most simplicial spheres cannot be obtained in this way.

One important open problem in the field was the g-conjecture, formulated by Peter McMullen, which asks about possible numbers of faces of different dimensions of a simplicial sphere. In December 2018, the g-conjecture was proven by Karim Adiprasito in the more general context of rational homology spheres.[1][2]

Examples

Properties

It follows from Euler's formula that any simplicial 2-sphere with n vertices has 3n 6 edges and 2n 4 faces. The case of n = 4 is realized by the tetrahedron. By repeatedly performing the barycentric subdivision, it is easy to construct a simplicial sphere for any n ≥ 4. Moreover, Ernst Steinitz gave a characterization of 1-skeleta (or edge graphs) of convex polytopes in R3 implying that any simplicial 2-sphere is a boundary of a convex polytope.

Branko Grünbaum constructed an example of a non-polytopal simplicial sphere (that is, a simplicial sphere that is not the boundary of a polytope). Gil Kalai proved that, in fact, "most" simplicial spheres are non-polytopal. The smallest example is of dimension d = 4 and has f0 = 8 vertices.

The upper bound theorem gives upper bounds for the numbers fi of i-faces of any simplicial d-sphere with f0 = n vertices. This conjecture was proved for polytopal spheres by Peter McMullen in 1970[3] and by Richard Stanley for general simplicial spheres in 1975.

The g-conjecture, formulated by McMullen in 1970, asks for a complete characterization of f-vectors of simplicial d-spheres. In other words, what are the possible sequences of numbers of faces of each dimension for a simplicial d-sphere? In the case of polytopal spheres, the answer is given by the g-theorem, proved in 1979 by Billera and Lee (existence) and Stanley (necessity). It has been conjectured that the same conditions are necessary for general simplicial spheres. The conjecture was proved by Karim Adiprasito in December 2018.[1][2]

gollark: Its internal HTTP logs, which I figured out how to get it to dump, do appear to show it doing *something*, but I don't understand them enough to say what.
gollark: The really weird thing is that Firefox didn't actually seem to be *sending* any request or whatever for the websockets. Nothing appears in devtools, wireshark didn't show anything websocket-looking (although I am not very good at using it, I think it was working because it showed the regular HTTP requests), mitmproxy didn't say anything either, and the webserver logs don't show it.
gollark: I've decided to just update caddy and see if that helps, since I am a bit overdue for switching to v2.
gollark: I have some applications sending data over websocket to the browser - mostly JSON. They work in Chrome and Firefox on Android, but not on Firefox on my Linux systems - it just says "failed to establish connection". Specifically, they work if I run them directly on my local machine but not behind my server's reverse proxy.
gollark: Anyone know a good place to ask about this?

See also

References

  1. Adiprasito, Karim. "Combinatorial Lefschetz theorems beyond positivity". arXiv:1812.10454.
  2. Kalai, Gil (2018-12-25). "Amazing: Karim Adiprasito proved the g-conjecture for spheres!". Combinatorics and more. Retrieved 2018-12-25.
  3. McMullen, P. On the upper-bound conjecture for convex polytopes. Journal of Combinatorial Theory, Series B 10 1971 187–200.
  • Richard Stanley, Combinatorics and commutative algebra. Second edition. Progress in Mathematics, 41. Birkhäuser Boston, Inc., Boston, MA, 1996. x+164 pp. ISBN 0-8176-3836-9
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.