Shibasaki catalysts

Shibasaki catalysts are a class of hetero-bimetallic complexes with the general formula [Ln(binol)3(M)3] (M = alkali metal, Ln = lanthanide). They are named after Masakatsu Shibasaki, whose group first developed them, and are used as asymmetric catalysts.

General structure of Shibasaki catalysts

Development

The Shibasaki group produced the first chiral lanthanide-binaphtholate complex in 1992, which was used to catalyse nitroaldol reactions.[1] The complex was not characterised but was the first to perform the reaction enantioselectively. This success led to further research which resulted in the development of heterometallic complexes with the formula [Ln(binol)3(M)3], the structure of which was elucidated by X-ray crystallography.[2]

Scope

Shibasaki catalysts are effective for a wide range of enantioselective reactions including nitroaldol,[3] Michael,[4] Diels-Alder[5] and hydrophosphonylation reactions.[6] Their effectiveness arises in part from their ability to act as both a Brønsted base by virtue of the metal alkoxide and a Lewis acid via the lanthanide ion. Enantioselectivity has been found to be sensitive to both Ln and M; with the nitroaldol reaction being most effective when Ln = Eu and M = Li[7] whereas the Michael reaction requires Ln = La and M = Na.[8] It was observed that alterations of Ln and M caused predictable changes in the bite angle of the binaphthol backbone.

gollark: Using my patented ***ALGORITHM*** of basic statistics and wild guessing™.
gollark: That's basically what I said (the extra volume of halloween stuff mucks up the ratios).
gollark: Any opinions on my theory of what's going on with the pricing? Basically, I said that if extra dragons are introduced to the total but not the rest of the system (golds, whatever else), then rarer stuff's ratios will be affected more than common stuff, so the gold pricing goes crazy and nebulae stay the same.
gollark: 3.
gollark: My theory of what's up, copied from the forum thread:If many new eggs are being introduced to the system, then that will most affect the stuff which is rarest, by making it rarer by comparison, but commons will stay the same. As for why it happened now? Weekly updates, possibly.Example:Imagine there are 200 dragons, 5 of which are golds.The ratio of golds to total dragons is now 5:200 = 1:40. If the target ratio is 1:50 then prices will be higher to compensate.Now imagine there are an extra 200 dragons added, none of which are golds.The ratio would then be 5:400 = 1:80. Then, assuming the same target, prices will drop.This is of course simplified, and the ratios may not work like this, but this matches observed behavior pretty well.

References

  1. Sasai, Hiroaki; Suzuki, Takeyuki; Arai, Shigeru; Arai, Takayoshi; Shibasaki, Masakatsu (1 May 1992). "Basic character of rare earth metal alkoxides. Utilization in catalytic carbon-carbon bond-forming reactions and catalytic asymmetric nitroaldol reactions". Journal of the American Chemical Society. 114 (11): 4418–4420. doi:10.1021/ja00037a068.
  2. Sasai, Hiroaki; Suzuki, Takeyuki; Itoh, Noriie; Tanaka, Koichi; Date, Tadamasa; Okamura, Kimio; Shibasaki, Masakatsu (1 November 1993). "Catalytic asymmetric nitroaldol reaction using optically active rare earth BINOL complexes: investigation of the catalyst structure". Journal of the American Chemical Society. 115 (22): 10372–10373. doi:10.1021/ja00075a068.
  3. Sasai, Hiroaki; Kim, Won-Sup; Suzuki, Takeyuki; Shibasaki, Masakatsu; Mitsuda, Masaru; Hasegawa, Junzo; Ohashi, Takehisa (1994). "Diastereoselective catalytic asymmetric nitroaldol reaction utilizing rare earth-Li-(R)-BINOL complex. A highly efficient synthesis of norstatine". Tetrahedron Letters. 35 (33): 6123–6126. doi:10.1016/0040-4039(94)88093-X.
  4. Sasai, Hiroaki; Arai, Takayoshi; Satow, Yoshinori; Houk, K. N.; Shibasaki, Masakatsu (1 June 1995). "The First Heterobimetallic Multifunctional Asymmetric Catalyst". Journal of the American Chemical Society. 117 (23): 6194–6198. doi:10.1021/ja00128a005.
  5. Morita, Takahiro; Arai, Takayoshi; Sasai, Hiroaki; Shibasaki, Masakatsu (1998). "Utilization of heterobimetallic complexes as Lewis acids". Tetrahedron: Asymmetry. 9 (8): 1445–1450. doi:10.1016/S0957-4166(98)00124-4.
  6. Sasai, Hiroaki; Arai, Shigeru; Tahara, Yoshihiro; Shibasaki, Masakatsu (1 October 1995). "Catalytic Asymmetric Synthesis of .alpha.-Amino Phosphonates Using Lanthanoid-Potassium-BINOL Complexes". The Journal of Organic Chemistry. 60 (21): 6656–6657. doi:10.1021/jo00126a003.
  7. Sasai, Hiroaki; Suzuki, Takeyuki; Itoh, Noriie; Arai, Shigeru; Shibasaki, Masakatsu (1993). "Effects of rare earth metals on the catalytic asymmetric nitroaldol reaction". Tetrahedron Letters. 34 (16): 2657–2660. doi:10.1016/S0040-4039(00)77649-0.
  8. Sasai, Hiroaki; Arai, Takayoshi; Satow, Yoshinori; Houk, K. N.; Shibasaki, Masakatsu (1 June 1995). "The First Heterobimetallic Multifunctional Asymmetric Catalyst". Journal of the American Chemical Society. 117 (23): 6194–6198. doi:10.1021/ja00128a005.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.