Secondary vector bundle structure

In mathematics, particularly differential topology, the secondary vector bundle structure refers to the natural vector bundle structure (TE, p, TM) on the total space TE of the tangent bundle of a smooth vector bundle (E, p, M), induced by the push-forward p : TETM of the original projection map p : EM. This gives rise to a double vector bundle structure (TE,E,TM,M).

In the special case (E, p, M) = (TM, πTM, M), where TE = TTM is the double tangent bundle, the secondary vector bundle (TTM, (πTM), TM) is isomorphic to the tangent bundle (TTM, πTTM, TM) of TM through the canonical flip.

Construction of the secondary vector bundle structure

Let (E, p, M) be a smooth vector bundle of rank N. Then the preimage (p)−1(X) ⊂ TE of any tangent vector X in TM in the push-forward p : TETM of the canonical projection p : EM is a smooth submanifold of dimension 2N, and it becomes a vector space with the push-forwards

of the original addition and scalar multiplication

as its vector space operations. The triple (TE, p, TM) becomes a smooth vector bundle with these vector space operations on its fibres.

Proof

Let (U, φ) be a local coordinate system on the base manifold M with φ(x) = (x1, ..., xn) and let

be a coordinate system on adapted to it. Then

so the fiber of the secondary vector bundle structure at X in TxM is of the form

Now it turns out that

gives a local trivialization χ : TWTU × R2N for (TE, p, TM), and the push-forwards of the original vector space operations read in the adapted coordinates as

and

so each fibre (p)−1(X) ⊂ TE is a vector space and the triple (TE, p, TM) is a smooth vector bundle.

Linearity of connections on vector bundles

The general Ehresmann connection TE = HEVE on a vector bundle (E, p, M) can be characterized in terms of the connector map

where vlv : EVvE is the vertical lift, and vprv : TvEVvE is the vertical projection. The mapping

induced by an Ehresmann connection is a covariant derivative on Γ(E) in the sense that

if and only if the connector map is linear with respect to the secondary vector bundle structure (TE, p, TM) on TE. Then the connection is called linear. Note that the connector map is automatically linear with respect to the tangent bundle structure (TE, πTE, E).

gollark: In decently general-purpose programming languages with access to more space, you can construct ridiculously large numbers by implementing ↑ and all that.
gollark: Not without extra imports or something. or maybe python2.
gollark: Probably.
gollark: 'Twould be very slow, though, given that it would need to *execute* the programs to test them, and it would probably miss a few since it would need maybe a 10-second cutoff.
gollark: You know, it might be possible to write some sort of program to automatically optimize busy-beavers for a given language and length.

See also

References

  • P.Michor. Topics in Differential Geometry, American Mathematical Society (2008).
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.