S-object

In algebraic topology, an -object (also called a symmetric sequence) is a sequence of objects such that each comes with an action[note 1] of the symmetric group .

The category of combinatorial species is equivalent to the category of finite -sets (roughly because the permutation category is equivalent to the category of finite sets and bijections.)[1]

-module

By -module, we mean an -object in the category of finite-dimensional vector spaces over a field k of characteristic zero (the symmetric groups act from the right by convention). Then each -module determines a Schur functor on .

gollark: Which of the positions in this are good, if any|?|
gollark: https://images-ext-2.discordapp.net/external/9m9Wu6l9jnH0oDfwabQ6z11tYWedgIGF9uwz3qlLty0/https/media.discordapp.net/attachments/779006896761471010/943151710581432432/unknown.png?
gollark: What are the implications of this for the steel industry?
gollark: https://media.discordapp.net/attachments/683607166967349248/947461090726510592/animal-welfare.png
gollark: But only after considering the previous ones.

See also

Notes

  1. An action of a group G on an object X in a category C is a functor from G viewed as a category with a single object to C that maps the single object to X. Note this functor then induces a group homomorphism ; cf. Automorphism group#In category theory.

References

  1. Getzler & Jones, § 1
  • Jones, J. D. S.; Getzler, Ezra (1994-03-08). "Operads, homotopy algebra and iterated integrals for double loop spaces". arXiv:hep-th/9403055.
  • Loday, Jean-Louis (1996). "La renaissance des opérades". www.numdam.org. Séminaire Nicolas Bourbaki. MR 1423619. Zbl 0866.18007. Retrieved 2018-09-27.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.