Waldhausen category

In mathematics, a Waldhausen category is a category C equipped with some additional data, which makes it possible to construct the K-theory spectrum of C using a so-called S-construction. It's named after Friedhelm Waldhausen, who introduced this notion (under the term category with cofibrations and weak equivalences) to extend the methods of algebraic K-theory to categories not necessarily of algebraic origin, for example the category of topological spaces.

Definition

Let C be a category, co(C) and we(C) two classes of morphisms in C, called cofibrations and weak equivalences respectively. The triple (C, co(C), we(C)) is called a Waldhausen category if it satisfies the following axioms, motivated by the similar properties for the notions of cofibrations and weak homotopy equivalences of topological spaces:

  • C has a zero object, denoted by 0;
  • isomorphisms are included in both co(C) and we(C);
  • co(C) and we(C) are closed under composition;
  • for each object AC the unique map 0 → A is a cofibration, i.e. is an element of co(C);
  • co(C) and we(C) are compatible with pushouts in a certain sense.

For example, if is a cofibration and is any map, then there must exist a pushout , and the natural map should be cofibration:

Relations with other notions

In algebraic K-theory and homotopy theory there are several notions of categories equipped with some specified classes of morphisms. If C has a structure of an exact category, then by defining we(C) to be isomorphisms, co(C) to be admissible monomorphisms, one obtains a structure of a Waldhausen category on C. Both kinds of structure may be used to define K-theory of C, using the Q-construction for an exact structure and S-construction for a Waldhausen structure. An important fact is that the resulting K-theory spaces are homotopy equivalent.

If C is a model category with a zero object, then the full subcategory of cofibrant objects in C may be given a Waldhausen structure.

S-construction

The Waldhausen S-construction produces from a Waldhausen category C a sequence of Kan complexes , which forms a spectrum. Let denote the loop space of the geometric realization of . Then the group

is the n-th K-group of C. Thus, it gives a way to define higher K-groups. Another approach for higher K-theory is Quillen's Q-construction.

The construction is due to Friedhelm Waldhausen.

biWaldhausen categories

A category C is equipped with bifibrations if it has cofibrations and its opposite category COP has so also. In that case, we denote the fibrations of COP by quot(C). In that case, C is a biWaldhausen category if C has bifibrations and weak equivalences such that both (C, co(C), we) and (COP, quot(C), weOP) are Waldhausen categories.

Waldhausen and biWaldhausen categories are linked with algebraic K-theory. There, many interesting categories are complicial biWaldhausen categories. For example: The category of bounded chain complexes on an exact category . The category of functors when is so. And given a diagram , then is a nice complicial biWaldhausen category when is.

gollark: This could seriously be very cool.
gollark: I could add colors and occasionally muck up the formatting slightly, have each sentence get its own header saying "Section 1, Clause 3" or something, maybe even have JS on the page subtly edit it as you scroll down!
gollark: It would actually support line wrapping, as well as Unicode, italic/bold/strikethrough, headers, external links, that sort of thing.
gollark: The current privacy policy viewing experience is honestly quite bad, so I think it could be way nicer if it opened in people's browsers.
gollark: At this rate I'll probably need a privacy policy autogen tool to keep it in sync!

References

  • Waldhausen, Friedhelm (1985), "Algebraic K-theory of spaces", Algebraic and geometric topology (New Brunswick, N.J., 1983 (PDF), Lecture Notes in Mathematics, 1126, Berlin: Springer, pp. 318–419, doi:10.1007/BFb0074449, ISBN 978-3-540-15235-4, MR 0802796
  • C. Weibel, The K-book, an introduction to algebraic K-theory http://www.math.rutgers.edu/~weibel/Kbook.html
  • G. Garkusha, Systems of Diagram Categories and K-theory http://front.math.ucdavis.edu/0401.5062
  • Sagave, S. (2004). "On the algebraic K-theory of model categories". Journal of Pure and Applied Algebra. 190 (1–3): 329–340. doi:10.1016/j.jpaa.2003.11.002.
  • Lurie, Jacob, Higher K-Theory of ∞-Categories (Lecture 16) (PDF)

See also

  • Complete Segal space
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.