Quotient of a formal language

In mathematics and computer science, the right quotient (or simply quotient) of a formal language with a formal language is the language consisting of strings w such that wx is in for some string x in .[1] In symbols, we write:

In other words, each string in is the prefix of a string in , with the remainder of the word being a string in .

Similarly, the left quotient of with is the language consisting of strings w such that xw is in for some string x in . In symbols, we write:

The left quotient can be regarded as the set of postfixes that complete words from , such that the resulting word is in .

Example

Consider

and

.

Now, if we insert a divider into the middle of an element of , the part on the right is in only if the divider is placed adjacent to a b (in which case i  n and j = n) or adjacent to a c (in which case i = 0 and j  n). The part on the left, therefore, will be either or ; and can be written as

.

Properties

Some common closure properties of the right quotient include:

  • The quotient of a regular language with any other language is regular.
  • The quotient of a context free language with a regular language is context free.
  • The quotient of two context free languages can be any recursively enumerable language.
  • The quotient of two recursively enumerable languages is recursively enumerable.

These closure properties hold for both left and right quotients.

gollark: Because airlines have a really complicated price structure, and the language used to describe fares allows you to encode various hard problems.
gollark: Ticketing-wise.
gollark: I read that it's actually an uncomputable problem to determine how to fly between two airports or something like that.
gollark: GPUs as good parallel processors, or a good way to market/fund parallel processors, that is.
gollark: Not really. I recall reading that Nvidia's founders explicitly thought of this.

See also

References

  1. Linz, Peter (2011). An Introduction to Formal Languages and Automata. Jones & Bartlett Publishers. pp. 104–108. ISBN 9781449615529. Retrieved 7 July 2014.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.