Quasi-identity
In universal algebra, a quasi-identity is an implication of the form
- s1 = t1 ∧ … ∧ sn = tn → s = t
where s1, ..., sn, t1, ..., tn, s, and t are terms built up from variables using the operation symbols of the specified signature.
A quasi-identity amount to a conditional equation for which the conditions themselves are equations. Alternatively, it can be seen as a disjunction of equations s1 = t1 ∨ ... ∨ sn = tn ∨ s = t. A quasi-identity for which n = 0 is an ordinary identity or equation, whence quasi-identities are a generalization of identities. Quasi-identities are special type of Horn clauses.
See also
References
- Burris, Stanley N.; H.P. Sankappanavar (1981). A Course in Universal Algebra. Springer. ISBN 3-540-90578-2. Free online edition.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.