Pseudoconvexity

In mathematics, more precisely in the theory of functions of several complex variables, a pseudoconvex set is a special type of open set in the n-dimensional complex space Cn. Pseudoconvex sets are important, as they allow for classification of domains of holomorphy.

Let

be a domain, that is, an open connected subset. One says that is pseudoconvex (or Hartogs pseudoconvex) if there exists a continuous plurisubharmonic function on such that the set

is a relatively compact subset of for all real numbers In other words, a domain is pseudoconvex if has a continuous plurisubharmonic exhaustion function. Every (geometrically) convex set is pseudoconvex.

When has a (twice continuously differentiable) boundary, this notion is the same as Levi pseudoconvexity, which is easier to work with. More specifically, with a boundary, it can be shown that has a defining function; i.e., that there exists which is so that , and . Now, is pseudoconvex iff for every and in the complex tangent space at p, that is,

, we have

If does not have a boundary, the following approximation result can come in useful.

Proposition 1 If is pseudoconvex, then there exist bounded, strongly Levi pseudoconvex domains with (smooth) boundary which are relatively compact in , such that

This is because once we have a as in the definition we can actually find a C exhaustion function.

The case n = 1

In one complex dimension, every open domain is pseudoconvex. The concept of pseudoconvexity is thus more useful in dimensions higher than 1.

gollark: I'd rather be ultra-fancy and have it access some push notification API and send a notification to my phone.
gollark: IRC? What does that have to do with anything?
gollark: ```luapython```
gollark: 0.00001.
gollark: There are still some there.

See also

References

  • Lars Hörmander, An Introduction to Complex Analysis in Several Variables, North-Holland, 1990. (ISBN 0-444-88446-7).
  • Steven G. Krantz. Function Theory of Several Complex Variables, AMS Chelsea Publishing, Providence, Rhode Island, 1992.

This article incorporates material from Pseudoconvex on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.