Symmetric-key algorithm

Symmetric-key algorithms[lower-alpha 1] are algorithms for cryptography that use the same cryptographic keys for both encryption of plaintext and decryption of ciphertext. The keys may be identical or there may be a simple transformation to go between the two keys.[1] The keys, in practice, represent a shared secret between two or more parties that can be used to maintain a private information link.[2] This requirement that both parties have access to the secret key is one of the main drawbacks of symmetric key encryption, in comparison to public-key encryption (also known as asymmetric key encryption).[3][4]

Types

Symmetric-key encryption can use either stream ciphers or block ciphers.[5]

  • Stream ciphers encrypt the digits (typically bytes), or letters (in substitution ciphers) of a message one at a time. An example is the Vigenère Cipher.
  • Block ciphers take a number of bits and encrypt them as a single unit, padding the plaintext so that it is a multiple of the block size. The Advanced Encryption Standard (AES) algorithm, approved by NIST in December 2001, uses 128-bit blocks.

Implementations

Examples of popular symmetric-key algorithms include Twofish, Serpent, AES (Rijndael), Camellia, Salsa20, ChaCha20, Blowfish, CAST5, Kuznyechik, RC4, DES, 3DES, Skipjack, Safer, and IDEA.[6]

Cryptographic primitives based on symmetric ciphers

Symmetric ciphers are commonly used to achieve other cryptographic primitives than just encryption.

Encrypting a message does not guarantee that this message is not changed while encrypted. Hence often a message authentication code is added to a ciphertext to ensure that changes to the ciphertext will be noted by the receiver. Message authentication codes can be constructed from symmetric ciphers (e.g. CBC-MAC).

However, symmetric ciphers cannot be used for non-repudiation purposes except by involving additional parties.[7] See the ISO/IEC 13888-2 standard.

Another application is to build hash functions from block ciphers. See one-way compression function for descriptions of several such methods.

Construction of symmetric ciphers

Many modern block ciphers are based on a construction proposed by Horst Feistel. Feistel's construction makes it possible to build invertible functions from other functions that are themselves not invertible.

Security of symmetric ciphers

Symmetric ciphers have historically been susceptible to known-plaintext attacks, chosen-plaintext attacks, differential cryptanalysis and linear cryptanalysis. Careful construction of the functions for each round can greatly reduce the chances of a successful attack.

Key management

Key establishment

Symmetric-key algorithms require both the sender and the recipient of a message to have the same secret key. All early cryptographic systems required one of those people to somehow receive a copy of that secret key over a physically secure channel.

Nearly all modern cryptographic systems still use symmetric-key algorithms internally to encrypt the bulk of the messages, but they eliminate the need for a physically secure channel by using Diffie–Hellman key exchange or some other public-key protocol to securely come to agreement on a fresh new secret key for each message (forward secrecy).

Key generation

When used with asymmetric ciphers for key transfer, pseudorandom key generators are nearly always used to generate the symmetric cipher session keys. However, lack of randomness in those generators or in their initialization vectors is disastrous and has led to cryptanalytic breaks in the past. Therefore, it is essential that an implementation use a source of high entropy for its initialization.[8][9][10]

Reciprocal cipher

A reciprocal cipher is a cipher where, just as one enters the plaintext into the cryptography system to get the ciphertext, one could enter the ciphertext into the same place in the system to get the plaintext. A reciprocal cipher is also sometimes referred as self-reciprocal cipher.

Practically all mechanical cipher machines implement a reciprocal cipher, a mathematical involution on each typed-in letter. Instead of designing two kinds of machines, one for encrypting and one for decrypting, all the machines can be identical and can be set up (keyed) the same way.[11]

Examples of reciprocal ciphers include:

Practically all modern ciphers can be classified as either a stream cipher, most of which use a reciprocol XOR cipher combiner, or a block cipher, most of which use use Feistel cipher or Lai–Massey scheme with a reciprocal transformation in each round.

Notes

  1. Other terms for symmetric-key encryption are secret-key, single-key, shared-key, one-key, and private-key encryption. Use of the last and first terms can create ambiguity with similar terminology used in public-key cryptography. Symmetric-key cryptography is to be contrasted with asymmetric-key cryptography.
gollark: Someone in the tradehub has gotten a copper and xenowyrm (both CB) and wants... a zyumorph.
gollark: Ah.
gollark: Doesn't look very codey.
gollark: Bye of the goodfulness.
gollark: Er, yes please.

References

  1. Kartit, Zaid (February 2016). "Applying Encryption Algorithms for Data Security in Cloud Storage, Kartit, et al". Advances in ubiquitous networking: proceedings of UNet15: 147.
  2. Delfs, Hans & Knebl, Helmut (2007). "Symmetric-key encryption". Introduction to cryptography: principles and applications. Springer. ISBN 9783540492436.CS1 maint: uses authors parameter (link)
  3. Mullen, Gary & Mummert, Carl (2007). Finite fields and applications. American Mathematical Society. p. 112. ISBN 9780821844182.CS1 maint: uses authors parameter (link)
  4. "Demystifying symmetric and asymmetric methods of encryption". Cheap SSL Shop. 2017-09-28.
  5. Pelzl & Paar (2010). Understanding Cryptography. Berlin: Springer-Verlag. p. 30.
  6. Roeder, Tom. "Symmetric-Key Cryptography". www.cs.cornell.edu. Retrieved 2017-02-05.
  7. 14:00-17:00. "ISO/IEC 13888-2:2010". ISO. Retrieved 2020-02-04.CS1 maint: numeric names: authors list (link)
  8. Ian Goldberg and David Wagner. "Randomness and the Netscape Browser". January 1996 Dr. Dobb's Journal. quote: "it is vital that the secret keys be generated from an unpredictable random-number source."
  9. Thomas Ristenpart , Scott Yilek. "When Good Randomness Goes Bad: Virtual Machine Reset Vulnerabilities and Hedging Deployed Cryptography (2010)" CiteSeerx: 10.1.1.183.3583 quote from abstract: "Random number generators (RNGs) are consistently a weak link in the secure use of cryptography."
  10. "Symmetric Cryptography". James. 2006-03-11.
  11. Greg Goebel. "The Mechanization of Ciphers". 2018.
  12. "... the true Beaufort cipher. Notice that we have reciprocal encipherment; encipherment and decipherment are identically the same thing." -- Helen F. Gaines. "Cryptanalysis: A Study of Ciphers and Their Solution". 2014. p. 121.
  13. Greg Goebel. "The Mechanization of Ciphers". 2018.
  14. Friedrich L. Bauer. "Decrypted Secrets: Methods and Maxims of Cryptology". 2006. p. 144
  15. David Salomon. "Coding for Data and Computer Communications". 2006. p. 245
  16. Greg Goebel. "US Codebreakers In The Shadow Of War". 2018.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.