Petalomonas

Petalomonas is a genus of phagotrophic, flagellated euglenoids.[1] Phagotrophic euglenoids are one of the most important forms of flagellates in benthic aquatic systems, playing an important role in microbial food webs.[2] The traits that distinguish this particular genus are highly variable, especially at higher taxa.[2] However, general characteristics such as a rigid cell shape and single emergent flagellum can describe the species among this genus.

Petalomonas
Scientific classification
Domain:
Phylum:
Class:
Order:
Petalomonadida
Family:
Scytomonadidae
Genus:
Petalomonas

F. Stein, 1859

History of knowledge

Petalomonas was first describe by Dr. Friedrich Stein, a zoologist at the University of Prague, in 1859.[3]

Habitat and ecology

Petalomonas is a cosmopolitan genus, most abundant in fresh water with a few species observed in marine environments.[1][4] These euglenoids mainly reside in muddy sediments as benthic organisms.[5] The cells are phagotrophic, feeding on bacteria, and/or osmotophic, assimilating nutrients from its surroundings.[1][6]

Description

These non-metabolic, colourless cells range in size from 8-45um, with a general flattened, leaf-like shape.[1] The posterior end is rounded or truncate and the anterior end is narrowed; however, cells can span from ovoid, to fusiform or triangular, to elongately oval.[1][4] A distinguishing feature of the euglenoids is the presence of proteinaceous pellicle strips that are underlined with microtubules.[7] In Petalomonas, cells are covered with approximately a dozen thickly, fused pellicle strips making the cell very rigid and possibly resistant to surface ice crystal formation that can disrupt the cell.[7] These pellicle strips, unlike most euglenoids, are lacking grooves or troughs; however, species specific pellicle features, such as pleat-like thickenings at the joints of pellicle strips, that characterize P. cantuscygni, can distinguish certain species.[5] Strong ribs or keels are also evident in these cells, which can be arranged spirally or relatively straight, ranging in width.[1][4] Some species may contain furrows that vary in size and depth, and can be located dorsally and/or ventrally on the body of the cell.[4] The cells also have an abundance of paramylon bodies, typically used for the storage of starch, that are observed in all species.[1][4]

The feeding structure, not visible under light microscopy, is relatively simple consisting of a pocket-like cavity ending with a cytostome, lined with microtubules for phagocytosis.[8][5] The cells within this genus are also defined by one emergent flagellum extending from a sub-apical opening, directed anteriorly when swimming.[1][7][4] The movement of this flagellum is very minimal with some vibration at the tip; however, some species are observed to have vigorously, whipping flagellum that result in rapid rotation and oscillation of the cell body.[4] These euglenoids have also been observed to glide forward using the body, while the flagellum is used to contact the substrate.[7][4] The nucleus is located centrally to the left side of the cell.[4]

Life history

In euglenoids, sexual reproduction is unknown; however, asexual reproduction has been observed to occur in this genus through longitudinal fission, where the division occurs very quickly, starting at the anterior end of the cell.[6]

List of species

  • Petalomonas abscissa (Dujardin) Stein
  • Petalomonas acuminata Hollande
  • Petalomonas africana Bourrelly
  • Petalomonas alata (A.C. Stokes) A.C. Stokes
  • Petalomonas applanata Skuja
  • Petalomonas arcuata Hollande
  • Petalomonas asymmetrica Schawhan & Jahn
  • Petalomonas bicarinata Shawhan & Jahn
  • Petalomonas calycimonadoides Christen
  • Petalomonas calycimonoides W.J.Lee & D.J.Patterson
  • Petalomonas cantuscygni J.Cann & N.Pennick
  • Petalomonas carinata A.C.Stokes
  • Petalomonas christenii W.J.Lee & D.J.Patterson
  • Petalomonas conchata Christen
  • Petalomonas curvata Skuja
  • Petalomonas dentata Christen
  • Petalomonas dilatata Hollande
  • Petalomonas dorsalis Stokes
  • Petalomonas dubosqui Hollande
  • Petalomonas excavata Skuja
  • Petalomonas gibbera Christen
  • Petalomonas gigas Skuja
  • Petalomonas hyalina Christen
  • Petalomonas inflexa G.A.Klebs
  • Petalomonas intorta W.J.Lee & D.J.Patterson
  • Petalomonas involuta Skuja
  • Petalomonas irregularis Skuja
  • Petalomonas iugosa W.J.Lee & D.J.Patterson
  • Petalomonas klebsii Christen
  • Petalomonas klinostoma Skuja
  • Petalomonas labrum W.J.Lee & D.J.Patterson
  • Petalomonas lata Christen
  • Petalomonas mediocanellata F. Stein
  • Petalomonas messikommeri Christen
  • Petalomonas micra R.E.Norris
  • Petalomonas minor Larson & D.J. Patterson
  • Petalomonas minuta Hollande
  • Petalomonas minutula Christen
  • Petalomonas mira Awerinzew
  • Petalomonas ornata Skvortzov
  • Petalomonas ovata Skvortzov
  • Petalomonas ovum Matvienko
  • Petalomonas paludosa Christen
  • Petalomonas pentacarinata Péterfi
  • Petalomonas phacoides Skuja
  • Petalomonas plana W.J.Lee & D.J.Patterson
  • Petalomonas platyrhyncha Skuja
  • Petalomonas pluteus Christen
  • Petalomonas praegnans Skuja
  • Petalomonas pringsheimii Christen
  • Petalomonas prototheca Skuja
  • Petalomonas punctato-striata Skuja
  • Petalomonas pusilla Skuja
  • Petalomonas quadrilineata Penard
  • Petalomonas quinquecarinata Hollande
  • Petalomonas quinquemarginata Shawhan & Jahn
  • Petalomonas robusta Christen
  • Petalomonas septemcarinata Shawhan & Jahn
  • Petalomonas sexlobata Klebs
  • Petalomonas simplex Christen
  • Petalomonas sinica Skvortzov
  • Petalomonas sinuata F.Stein
  • Petalomonas sphagnicola Tschermak-Woess
  • Petalomonas sphagnophila Christen
  • Petalomonas spinifera (Lackey) W.J.Lee & D.J.Patterson
  • Petalomonas splendens Hollande
  • Petalomonas steinii Klebs
  • Petalomonas stellata Skvortzov
  • Petalomonas sulcata A.C.Stokes
  • Petalomonas tenuis Christen
  • Petalomonas triangula Z.X.Shi
  • Petalomonas tricarinata Skuja
  • Petalomonas triquetra Skvortzov
  • Petalomonas variabilis Christen
  • Petalomonas ventritracta Skuja
  • Petalomonas virgata W.J.Lee & D.J.Patterson
  • Petalomonas vulgaris Skuja
  • Petalomonas wuhanica Z.Shi
gollark: You need to say it in rhymeyo yo yo lime?
gollark: I think Amazon fuses some of the plastic together somehow for Amazon reasons.
gollark: I have not.
gollark: Although my pens don't conveniently come apart that way.
gollark: It's a pen-based slingshot.

References

  1. Guiry, M. D.; Guiry, G. M. (2002). “Petalomonas F.Stein 1859”. Retrieved February 10, 2019, from
  2. Lax, G.; Simpson, A. G. (2013). “Combining Molecular Data with Classical Morphology for Uncultured Phagotrophic Euglenids (Excavata): A Single-Cell Approach”. Journal of Eukaryotic Microbiology. 60 (6): 615-625. doi:10.1111/jeu.12068
  3. Stein, F. (1859). Der Organismus der Infusionsthiere nach eigenen Forschungen in systematischer Reihenfolge bearb. von Friedrich Stein. doi:10.5962/bhl.title.3933
  4. Shawhan, F. M.; Jahn, T. L. (1947). “A Survey of the Genus Petalomonas Stein (Protozoa: Euglenida)”. Transactions of the American Microscopical Society. 66 (2): 182. doi:10.2307/3223249
  5. Cavalier-Smith, Thomas; Chao, Ema E.; Vickerman, Keith (2016). “New phagotrophic euglenoid species (new genus Decastava; Scytomonas saepesedens; Entosiphon oblongum), Hsp90 introns, and putative euglenoid Hsp90 pre-mRNA insertional editing”. European Journal of Protistology. 56: 147-170. doi:10.1016/j.ejop.2016.08.002
  6. Esson, H. J.; Leander, B. S. (2006). “A model for the morphogenesis of strip reduction patterns in phototrophic euglenids: Evidence for heterochrony in pellicle evolution”. Evolution Development, 8 (4): 378-388. doi:10.1111/j.1525-142x.2006.00110.x
  7. Larsen, Jacob; Patterson, David J. (1990). "Some flagellates (Protista) from tropical marine sediments”. Journal of Natural History, 24 (4): 801-937. doi:10.1080/00222939000770571
  8. Breglia, Susana A.; Yubuki, N.; Leander, Brian S. (2013). “Ultrastructure and Molecular Phylogenetic Position of Heteronema scaphurum: A Eukaryovorous Euglenid with a Cytoproct”. Journal of Eukaryotic Microbiology. 2: 107-120. doi: 10.1111/jeu.12014
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.