Petalomonas
Petalomonas is a genus of phagotrophic, flagellated euglenoids.[1] Phagotrophic euglenoids are one of the most important forms of flagellates in benthic aquatic systems, playing an important role in microbial food webs.[2] The traits that distinguish this particular genus are highly variable, especially at higher taxa.[2] However, general characteristics such as a rigid cell shape and single emergent flagellum can describe the species among this genus.
Petalomonas | |
---|---|
Scientific classification | |
Domain: | |
Phylum: | |
Class: | |
Order: | Petalomonadida |
Family: | Scytomonadidae |
Genus: | Petalomonas F. Stein, 1859 |
History of knowledge
Petalomonas was first describe by Dr. Friedrich Stein, a zoologist at the University of Prague, in 1859.[3]
Habitat and ecology
Petalomonas is a cosmopolitan genus, most abundant in fresh water with a few species observed in marine environments.[1][4] These euglenoids mainly reside in muddy sediments as benthic organisms.[5] The cells are phagotrophic, feeding on bacteria, and/or osmotophic, assimilating nutrients from its surroundings.[1][6]
Description
These non-metabolic, colourless cells range in size from 8-45um, with a general flattened, leaf-like shape.[1] The posterior end is rounded or truncate and the anterior end is narrowed; however, cells can span from ovoid, to fusiform or triangular, to elongately oval.[1][4] A distinguishing feature of the euglenoids is the presence of proteinaceous pellicle strips that are underlined with microtubules.[7] In Petalomonas, cells are covered with approximately a dozen thickly, fused pellicle strips making the cell very rigid and possibly resistant to surface ice crystal formation that can disrupt the cell.[7] These pellicle strips, unlike most euglenoids, are lacking grooves or troughs; however, species specific pellicle features, such as pleat-like thickenings at the joints of pellicle strips, that characterize P. cantuscygni, can distinguish certain species.[5] Strong ribs or keels are also evident in these cells, which can be arranged spirally or relatively straight, ranging in width.[1][4] Some species may contain furrows that vary in size and depth, and can be located dorsally and/or ventrally on the body of the cell.[4] The cells also have an abundance of paramylon bodies, typically used for the storage of starch, that are observed in all species.[1][4]
The feeding structure, not visible under light microscopy, is relatively simple consisting of a pocket-like cavity ending with a cytostome, lined with microtubules for phagocytosis.[8][5] The cells within this genus are also defined by one emergent flagellum extending from a sub-apical opening, directed anteriorly when swimming.[1][7][4] The movement of this flagellum is very minimal with some vibration at the tip; however, some species are observed to have vigorously, whipping flagellum that result in rapid rotation and oscillation of the cell body.[4] These euglenoids have also been observed to glide forward using the body, while the flagellum is used to contact the substrate.[7][4] The nucleus is located centrally to the left side of the cell.[4]
Life history
In euglenoids, sexual reproduction is unknown; however, asexual reproduction has been observed to occur in this genus through longitudinal fission, where the division occurs very quickly, starting at the anterior end of the cell.[6]
List of species
- Petalomonas abscissa (Dujardin) Stein
- Petalomonas acuminata Hollande
- Petalomonas africana Bourrelly
- Petalomonas alata (A.C. Stokes) A.C. Stokes
- Petalomonas applanata Skuja
- Petalomonas arcuata Hollande
- Petalomonas asymmetrica Schawhan & Jahn
- Petalomonas bicarinata Shawhan & Jahn
- Petalomonas calycimonadoides Christen
- Petalomonas calycimonoides W.J.Lee & D.J.Patterson
- Petalomonas cantuscygni J.Cann & N.Pennick
- Petalomonas carinata A.C.Stokes
- Petalomonas christenii W.J.Lee & D.J.Patterson
- Petalomonas conchata Christen
- Petalomonas curvata Skuja
- Petalomonas dentata Christen
- Petalomonas dilatata Hollande
- Petalomonas dorsalis Stokes
- Petalomonas dubosqui Hollande
- Petalomonas excavata Skuja
- Petalomonas gibbera Christen
- Petalomonas gigas Skuja
- Petalomonas hyalina Christen
- Petalomonas inflexa G.A.Klebs
- Petalomonas intorta W.J.Lee & D.J.Patterson
- Petalomonas involuta Skuja
- Petalomonas irregularis Skuja
- Petalomonas iugosa W.J.Lee & D.J.Patterson
- Petalomonas klebsii Christen
- Petalomonas klinostoma Skuja
- Petalomonas labrum W.J.Lee & D.J.Patterson
- Petalomonas lata Christen
- Petalomonas mediocanellata F. Stein
- Petalomonas messikommeri Christen
- Petalomonas micra R.E.Norris
- Petalomonas minor Larson & D.J. Patterson
- Petalomonas minuta Hollande
- Petalomonas minutula Christen
- Petalomonas mira Awerinzew
- Petalomonas ornata Skvortzov
- Petalomonas ovata Skvortzov
- Petalomonas ovum Matvienko
- Petalomonas paludosa Christen
- Petalomonas pentacarinata Péterfi
- Petalomonas phacoides Skuja
- Petalomonas plana W.J.Lee & D.J.Patterson
- Petalomonas platyrhyncha Skuja
- Petalomonas pluteus Christen
- Petalomonas praegnans Skuja
- Petalomonas pringsheimii Christen
- Petalomonas prototheca Skuja
- Petalomonas punctato-striata Skuja
- Petalomonas pusilla Skuja
- Petalomonas quadrilineata Penard
- Petalomonas quinquecarinata Hollande
- Petalomonas quinquemarginata Shawhan & Jahn
- Petalomonas robusta Christen
- Petalomonas septemcarinata Shawhan & Jahn
- Petalomonas sexlobata Klebs
- Petalomonas simplex Christen
- Petalomonas sinica Skvortzov
- Petalomonas sinuata F.Stein
- Petalomonas sphagnicola Tschermak-Woess
- Petalomonas sphagnophila Christen
- Petalomonas spinifera (Lackey) W.J.Lee & D.J.Patterson
- Petalomonas splendens Hollande
- Petalomonas steinii Klebs
- Petalomonas stellata Skvortzov
- Petalomonas sulcata A.C.Stokes
- Petalomonas tenuis Christen
- Petalomonas triangula Z.X.Shi
- Petalomonas tricarinata Skuja
- Petalomonas triquetra Skvortzov
- Petalomonas variabilis Christen
- Petalomonas ventritracta Skuja
- Petalomonas virgata W.J.Lee & D.J.Patterson
- Petalomonas vulgaris Skuja
- Petalomonas wuhanica Z.Shi
References
- Guiry, M. D.; Guiry, G. M. (2002). “Petalomonas F.Stein 1859”. Retrieved February 10, 2019, from
- Lax, G.; Simpson, A. G. (2013). “Combining Molecular Data with Classical Morphology for Uncultured Phagotrophic Euglenids (Excavata): A Single-Cell Approach”. Journal of Eukaryotic Microbiology. 60 (6): 615-625. doi:10.1111/jeu.12068
- Stein, F. (1859). Der Organismus der Infusionsthiere nach eigenen Forschungen in systematischer Reihenfolge bearb. von Friedrich Stein. doi:10.5962/bhl.title.3933
- Shawhan, F. M.; Jahn, T. L. (1947). “A Survey of the Genus Petalomonas Stein (Protozoa: Euglenida)”. Transactions of the American Microscopical Society. 66 (2): 182. doi:10.2307/3223249
- Cavalier-Smith, Thomas; Chao, Ema E.; Vickerman, Keith (2016). “New phagotrophic euglenoid species (new genus Decastava; Scytomonas saepesedens; Entosiphon oblongum), Hsp90 introns, and putative euglenoid Hsp90 pre-mRNA insertional editing”. European Journal of Protistology. 56: 147-170. doi:10.1016/j.ejop.2016.08.002
- Esson, H. J.; Leander, B. S. (2006). “A model for the morphogenesis of strip reduction patterns in phototrophic euglenids: Evidence for heterochrony in pellicle evolution”. Evolution Development, 8 (4): 378-388. doi:10.1111/j.1525-142x.2006.00110.x
- Larsen, Jacob; Patterson, David J. (1990). "Some flagellates (Protista) from tropical marine sediments”. Journal of Natural History, 24 (4): 801-937. doi:10.1080/00222939000770571
- Breglia, Susana A.; Yubuki, N.; Leander, Brian S. (2013). “Ultrastructure and Molecular Phylogenetic Position of Heteronema scaphurum: A Eukaryovorous Euglenid with a Cytoproct”. Journal of Eukaryotic Microbiology. 2: 107-120. doi: 10.1111/jeu.12014