POLARBEAR

POLARBEAR is a cosmic microwave background polarization experiment located in the Atacama Desert of northern Chile in the Antofagasta Region. The POLARBEAR experiment is mounted on the Huan Tran Telescope (HTT) at the James Ax Observatory in the Chajnantor Science Reserve. The HTT is located near the Atacama Cosmology Telescope on the slopes of Cerro Toco at an altitude of nearly 5,200 m (17,100 ft).[1][2]

POLARBEAR
Part ofSimons Array 
Location(s)Atacama Desert
Coordinates22°57′29″S 67°47′10″W
Altitude5,200 m (17,100 ft)
Wavelength148, 95 GHz (2.03, 3.16 mm)
Built2010 –2012  (2010 –2012 )
First light10 January 2012 
Telescope stylecosmic microwave background experiment
radio telescope 
Diameter2.5 m (8 ft 2 in)
Angular resolution3.5 minute of arc 
Websitebolo.berkeley.edu/polarbear/
Location of POLARBEAR
Related media on Wikimedia Commons

POLARBEAR was developed by an international collaboration which includes University of California, Berkeley, Lawrence Berkeley National Lab, University of Colorado at Boulder, University of California, San Diego, Imperial College, Astroparticle and Cosmology Laboratory of the University of Paris (2019), KEK (High Energy Accelerator Research Organization), McGill University, and Cardiff University.

History

The instrument was first installed at the Combined Array for Research in Millimeter-wave Astronomy site near Westgard Pass in California (USA) for an engineering run in 2010. It was then moved to its final destination in the Atacama Desert in September 2011. POLARBEAR saw first light on January 10, 2012, and began its first observing season in April 2012.[3]

In October 2014, POLARBEAR published a measurement of B-mode polarization at 150 GHz.[4] These measurements focused on arcminute scale fluctuations likely sourced by gravitational lensing by intervening large-scale structure. Earlier in the year, the BICEP2 project published related measurements of degree-scale B-mode polarization, possibly sourced by primordial gravitational waves from cosmic inflation, but they could not rule out cosmic dust as a cause.

POLARBEAR's published measurements focused on a small but clean patch of the sky where galactic foregrounds should be subdominant to gravitational lensing B-modes. The POLARBEAR team was able to report that the measured B-mode polarization was of cosmic origin at a 97.2% confidence level by focusing their observing time on this small patch where they are highly sensitive to arcminute anisotropies. However, this observing strategy is insensitive to the larger degree-scale inflationary B-modes that BICEP2 and Keck Array have searched for. [5]

gollark: They dynamically set `value` as an attribute, which CSS can style.
gollark: Not in general. It relies on quirkiness in some JS frameworks.
gollark: * underscores
gollark: I'm saddened yet unsurprised that the character set is just alphanumeric+hyphens.
gollark: It's just an alternative trendier runtime.

See also

References

  1. Keating, B.; Moyerman, S.; Boettger, D.; Edwards, J.; Fuller, G.; Matsuda, F.; Miller, N.; Paar, H.; Rebeiz, G.; et al. (2011). "Ultra High Energy Cosmology with POLARBEAR". 1110: 2101. arXiv:1110.2101. Bibcode:2011arXiv1110.2101K. Cite journal requires |journal= (help)
  2. Lee, Adrian T.; Tran, Huan; Ade, Peter; Arnold, Kam; Borrill, Julian; Dobbs, Matt A.; Errard, Josquin; Halverson, Nils; Holzapfel, William L.; Howard, Jacob; Jaffe, Andrew; Keating, Brian; Kermish, Zigmund; Linder, Eric; Miller, Nathan; Myers, Mike; Niarchou, Anastasia; Paar, Hans; Reichardt, Christian; Spieler, Helmuth; Steinbach, Bryan; Stompor, Radek; Tucker, Carole; Quealy, Erin; Richards, Paul L.; Zahn, Oliver; Kodama, Hideo; Ioka, Kunihito (28 August 2008). "POLARBEAR: Ultra-high Energy Physics with Measurements of CMB Polarization". AIP Conference Proceedings. 1040: 66. doi:10.1063/1.2981555.
  3. "First Light in Chile!". University of California Berkeley Department of Physics. Retrieved March 5, 2012.
  4. The Polarbear Collaboration (October 2014). "A Measurement of the Cosmic Microwave Background B-Mode Polarization Power Spectrum at Sub-Degree Scales with POLARBEAR". The Astrophysical Journal. 794 (2): 171. arXiv:1403.2369. Bibcode:2014ApJ...794..171P. doi:10.1088/0004-637X/794/2/171.
  5. "POLARBEAR project offers clues about origin of universe's cosmic growth spurt". Christian Science Monitor. October 21, 2014.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.